Machine learning and AI in marketing – Connecting computing power to human insights

计算机科学 机器学习 可解释性 人工智能 数据科学 杠杆(统计) 市场调研 知识管理 营销 业务
作者
Liye Ma,Baohong Sun
出处
期刊:International Journal of Research in Marketing [Elsevier]
卷期号:37 (3): 481-504 被引量:353
标识
DOI:10.1016/j.ijresmar.2020.04.005
摘要

Artificial intelligence (AI) agents driven by machine learning algorithms are rapidly transforming the business world, generating heightened interest from researchers. In this paper, we review and call for marketing research to leverage machine learning methods. We provide an overview of common machine learning tasks and methods, and compare them with statistical and econometric methods that marketing researchers traditionally use. We argue that machine learning methods can process large-scale and unstructured data, and have flexible model structures that yield strong predictive performance. Meanwhile, such methods may lack model transparency and interpretability. We discuss salient AI-driven industry trends and practices, and review the still nascent academic marketing literature which uses machine learning methods. More importantly, we present a unified conceptual framework and a multi-faceted research agenda. From five key aspects of empirical marketing research: method, data, usage, issue, and theory, we propose a number of research priorities, including extending machine learning methods and using them as core components in marketing research, using the methods to extract insights from large-scale unstructured, tracking, and network data, using them in transparent fashions for descriptive, causal, and prescriptive analyses, using them to map out customer purchase journeys and develop decision-support capabilities, and connecting the methods to human insights and marketing theories. Opportunities abound for machine learning methods in marketing, and we hope our multi-faceted research agenda will inspire more work in this exciting area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PRAYER1029完成签到,获得积分10
刚刚
充电宝应助安陌煜采纳,获得30
刚刚
1秒前
1秒前
李东秋发布了新的文献求助10
4秒前
从别后忆相逢完成签到 ,获得积分10
4秒前
领导范儿应助Mike采纳,获得10
4秒前
张三问完成签到,获得积分10
5秒前
7秒前
King16完成签到,获得积分10
7秒前
调皮汽车完成签到 ,获得积分10
9秒前
10秒前
英俊的铭应助李东秋采纳,获得10
10秒前
11秒前
rio发布了新的文献求助20
11秒前
14秒前
15秒前
hellosci666完成签到,获得积分10
15秒前
安陌煜发布了新的文献求助30
16秒前
帅气的盼芙完成签到,获得积分20
17秒前
Zhang Wei发布了新的文献求助10
19秒前
上官若男应助幽默的画笔采纳,获得10
19秒前
小二郎应助muncy采纳,获得10
19秒前
大林完成签到,获得积分10
21秒前
wanci应助rio采纳,获得10
23秒前
23秒前
温柔野心家完成签到 ,获得积分10
23秒前
24秒前
24秒前
Aries完成签到,获得积分10
25秒前
25秒前
26秒前
雪雪子哇发布了新的文献求助10
27秒前
27秒前
踏实马里奥完成签到,获得积分10
27秒前
赘婿应助油焖青椒采纳,获得10
27秒前
orixero应助Zhang Wei采纳,获得10
28秒前
Li656943234发布了新的文献求助10
29秒前
29秒前
李健的粉丝团团长应助tyx采纳,获得30
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155969
求助须知:如何正确求助?哪些是违规求助? 2807310
关于积分的说明 7872521
捐赠科研通 2465654
什么是DOI,文献DOI怎么找? 1312280
科研通“疑难数据库(出版商)”最低求助积分说明 630031
版权声明 601905