Catalytic Methane Combustion in Microreactors

微型反应器 催化作用 涂层 甲烷 催化燃烧 材料科学 化学工程 图层(电子) 燃烧 化学 纳米技术 有机化学 工程类
作者
Li He
标识
DOI:10.33612/diss.131751231
摘要

The current thesis deals with the catalytic methane combustion in microreactors with wall-coated Pt/γ-Al2O3 catalyst. The Pt/γ-Al2O3 washcoat preparation, the single- and multi-layer catalytic coating systems, and the different designs of microreactor geometries were particularly investigated. Various aspects were thus addressed, including the preparation procedures of the catalyst coating (e.g., the binder properties, pH value, initial Al2O3 particle size), the optimization of different reaction conditions with single- and multi-layer coating systems (e.g., temperature, flow rate, O2/CH4 molar ratio, Pt loading and coating thickness), the effect of internal channel configurations in the microreactor (i.e., involving straight parallel channels, cavity, double serpentine channels, obstacled parallel channels, meshed circuit and vascular network) on the reaction performance. An obvious decrease in the methane conversion could be found over the multi-layer systems compared to their respective single-layer counterparts (if the Pt mass in the catalyst was kept equal), due to the more significant internal diffusion limitation in thicker coatings. Among all the tested microreactor geometries washcoated with Pt/γ-Al2O3 catalyst, the highest methane conversion could be obtained in the double serpentine channel microreactor and the lowest presented in the mesh circuit microreactor, which can be explained based on the available coating surface area, flow distribution and residence time property. In order to achieve a desirable methane conversion in microreactors, a proper tuning of the catalytic coating properties (e.g., surface area, Pt loading and thickness), the residence time, the fluid distribution uniformity and other reaction parameters (e.g., temperature and oxygen to methane molar ratio) are required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
王大力发布了新的文献求助10
2秒前
宁宁要去看文献了完成签到,获得积分10
2秒前
丘比特应助拾柒采纳,获得10
2秒前
2秒前
Awei发布了新的文献求助10
3秒前
小二郎应助wy采纳,获得10
3秒前
李爱国应助YY采纳,获得10
3秒前
星辰大海应助舒服的士萧采纳,获得10
3秒前
ning完成签到 ,获得积分10
3秒前
无花果应助花飞飞凡采纳,获得10
3秒前
久燊完成签到,获得积分20
4秒前
6秒前
tengfei完成签到,获得积分10
6秒前
6秒前
DDDD发布了新的文献求助10
8秒前
陆程文完成签到,获得积分10
8秒前
8秒前
霞俊杰完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
Awei完成签到,获得积分10
9秒前
天天快乐应助牛贝贝采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
BowieHuang应助Ymir采纳,获得40
11秒前
11秒前
NexusExplorer应助1101592875采纳,获得10
11秒前
付研琪发布了新的文献求助10
11秒前
花灯王子完成签到,获得积分10
12秒前
Lqian_Yu完成签到 ,获得积分10
12秒前
小葛发布了新的文献求助10
12秒前
Kevin发布了新的文献求助20
13秒前
lzx完成签到,获得积分10
13秒前
ZIS发布了新的文献求助10
13秒前
吴帅发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836