Multivariate Time-Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet

计算机科学 稳健性(进化) 卷积神经网络 深度学习 人工神经网络 多元统计 时间序列 人工智能 数据挖掘 特征提取 机器学习 生物化学 化学 基因
作者
Xiaogang Zhang,Yanying Lei,Hua Chen,Lei Zhang,Yicong Zhou
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:17 (7): 4635-4645 被引量:38
标识
DOI:10.1109/tii.2020.3022019
摘要

The sintering temperature (ST) is a critical index for condition monitoring and process control of coal-fired equipment and is widely used in the production of cement, aluminum, electricity, steel, and chemicals. The accurate prediction of the ST is important for control systems to anticipate tragedies. In this article, we propose a deep learning model for forecasting the ST using automatic spatiotemporal feature extraction from multivariate thermal time series. A hybrid deep neural network named deep convolutional neural network and gated recurrent unit network (DCGNet) is designed to extract multivariate coupling and nonlinear dynamic characteristics for forecasting the ST. DCGNet uses convolutional neural networks and gated recurrent unit (GRU) to extract the local spatial-temporal dependence patterns among the multivariates, and another parallel GRU using the historical ST data as input is incorporated to more accurately capture the dynamic characteristics of ST time series. Based on the real-world data, application results show that the proposed approach has high forecasting accuracy and robustness, thus having broad application prospects in industrial processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
子车茗应助科研通管家采纳,获得30
1秒前
华仔应助科研通管家采纳,获得10
1秒前
Zx_1993应助科研通管家采纳,获得70
1秒前
buno应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得30
1秒前
涵青夏完成签到,获得积分10
1秒前
Linos应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
2秒前
孤独的远山完成签到,获得积分10
2秒前
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
残剑月应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
高高发布了新的文献求助10
3秒前
ChangzhenSong完成签到,获得积分10
3秒前
jinke完成签到,获得积分10
4秒前
王筠曦发布了新的文献求助10
4秒前
4秒前
领导范儿应助lemon采纳,获得10
4秒前
东原角发布了新的文献求助10
5秒前
5秒前
承乐发布了新的文献求助10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836