PhaseNet 2.0: Phase Unwrapping of Noisy Data Based on Deep Learning Approach

计算机科学 合成孔径雷达 算法 人工智能 深度学习 相(物质) 像素 卷积神经网络 相位展开 干涉测量 天文 物理 有机化学 化学
作者
G. E. Spoorthi,Rama Krishna Gorthi,Subrahmanyam Gorthi
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4862-4872 被引量:142
标识
DOI:10.1109/tip.2020.2977213
摘要

Phase unwrapping is an ill-posed classical problem in many practical applications of significance such as 3D profiling through fringe projection, synthetic aperture radar and magnetic resonance imaging. Conventional phase unwrapping techniques estimate the phase either by integrating through the confined path (referred to as path-following methods) or by minimizing the energy function between the wrapped phase and the approximated true phase (referred to as minimum-norm approaches). However, these conventional methods have some critical challenges like error accumulation and high computational time and often fail under low SNR conditions. To address these problems, this paper proposes a novel deep learning framework for unwrapping the phase and is referred to as “PhaseNet 2.0”. The phase unwrapping problem is formulated as a dense classification problem and a fully convolutional DenseNet based neural network is trained to predict the wrap-count at each pixel from the wrapped phase maps. To train this network, we simulate arbitrary shapes and propose new loss function that integrates the residues by minimizing the difference of gradients and also uses L 1 loss to overcome class imbalance problem. The proposed method, unlike our previous approach PhaseNet, does not require post-processing, highly robust to noise, accurately unwraps the phase even at the severe noise level of -5 dB, and can unwrap the phase maps even at relatively high dynamic ranges. Simulation results from the proposed framework are compared with different classes of existing phase unwrapping methods for varying SNR values and discontinuity, and these evaluations demonstrate the advantages of the proposed framework. We also demonstrate the generality of the proposed method on 3D reconstruction of synthetic CAD models that have diverse structures and finer geometric variations. Finally, the proposed method is applied to real-data for 3D profiling of objects using fringe projection technique and digital holographic interferometry. The proposed framework achieves significant improvements over existing methods while being highly efficient with interactive frame-rates on modern GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changjiaren完成签到,获得积分10
刚刚
xianglingliwei完成签到 ,获得积分0
1秒前
2秒前
2秒前
Scarlett完成签到,获得积分10
2秒前
纯洁之心完成签到,获得积分10
2秒前
2秒前
范断秋完成签到 ,获得积分10
3秒前
思源应助excellent采纳,获得10
3秒前
冷水完成签到,获得积分10
4秒前
汉堡包应助坚强的皮皮虾采纳,获得10
4秒前
文艺的又亦完成签到,获得积分10
4秒前
打打应助kyg采纳,获得10
5秒前
123关注了科研通微信公众号
5秒前
6秒前
Loooong发布了新的文献求助10
6秒前
深情的寒风完成签到,获得积分20
7秒前
打打应助我爱科研采纳,获得10
7秒前
yongziwu发布了新的文献求助10
7秒前
8秒前
传奇3应助化鼠采纳,获得10
9秒前
9秒前
顾矜应助彩色的芷容采纳,获得10
10秒前
11秒前
11秒前
小何应助ZME采纳,获得10
11秒前
11秒前
11秒前
十一发布了新的文献求助10
11秒前
永不停歇奈格里完成签到,获得积分10
12秒前
Owen应助薰衣草采纳,获得10
13秒前
明亮的幻竹应助celety采纳,获得10
13秒前
JamesPei应助起床做核酸采纳,获得10
13秒前
13秒前
徐佳达完成签到,获得积分10
14秒前
hao发布了新的文献求助10
14秒前
15秒前
安静的虔发布了新的文献求助10
15秒前
15秒前
Accepted发布了新的文献求助30
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160303
求助须知:如何正确求助?哪些是违规求助? 2811427
关于积分的说明 7892391
捐赠科研通 2470463
什么是DOI,文献DOI怎么找? 1315585
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038