亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PhaseNet 2.0: Phase Unwrapping of Noisy Data Based on Deep Learning Approach

计算机科学 合成孔径雷达 算法 人工智能 深度学习 相(物质) 像素 卷积神经网络 相位展开 干涉测量 天文 物理 有机化学 化学
作者
G. E. Spoorthi,Rama Krishna Gorthi,Subrahmanyam Gorthi
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 4862-4872 被引量:203
标识
DOI:10.1109/tip.2020.2977213
摘要

Phase unwrapping is an ill-posed classical problem in many practical applications of significance such as 3D profiling through fringe projection, synthetic aperture radar and magnetic resonance imaging. Conventional phase unwrapping techniques estimate the phase either by integrating through the confined path (referred to as path-following methods) or by minimizing the energy function between the wrapped phase and the approximated true phase (referred to as minimum-norm approaches). However, these conventional methods have some critical challenges like error accumulation and high computational time and often fail under low SNR conditions. To address these problems, this paper proposes a novel deep learning framework for unwrapping the phase and is referred to as "PhaseNet 2.0". The phase unwrapping problem is formulated as a dense classification problem and a fully convolutional DenseNet based neural network is trained to predict the wrap-count at each pixel from the wrapped phase maps. To train this network, we simulate arbitrary shapes and propose new loss function that integrates the residues by minimizing the difference of gradients and also uses L 1 loss to overcome class imbalance problem. The proposed method, unlike our previous approach PhaseNet, does not require post-processing, highly robust to noise, accurately unwraps the phase even at the severe noise level of -5 dB, and can unwrap the phase maps even at relatively high dynamic ranges. Simulation results from the proposed framework are compared with different classes of existing phase unwrapping methods for varying SNR values and discontinuity, and these evaluations demonstrate the advantages of the proposed framework. We also demonstrate the generality of the proposed method on 3D reconstruction of synthetic CAD models that have diverse structures and finer geometric variations. Finally, the proposed method is applied to real-data for 3D profiling of objects using fringe projection technique and digital holographic interferometry. The proposed framework achieves significant improvements over existing methods while being highly efficient with interactive frame-rates on modern GPUs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小唐尼完成签到,获得积分10
2秒前
6秒前
wsjlucky发布了新的文献求助10
13秒前
Richard完成签到,获得积分10
34秒前
1分钟前
1分钟前
1分钟前
wsjlucky完成签到 ,获得积分10
1分钟前
1分钟前
zhang发布了新的文献求助10
1分钟前
1分钟前
1分钟前
SciGPT应助璐璐baby采纳,获得10
1分钟前
2分钟前
sfwrbh发布了新的文献求助10
2分钟前
璐璐baby发布了新的文献求助10
2分钟前
CodeCraft应助sfwrbh采纳,获得10
3分钟前
等待的音响应助sfwrbh采纳,获得10
3分钟前
lmm完成签到 ,获得积分10
3分钟前
3分钟前
sfwrbh完成签到,获得积分20
3分钟前
lmgj发布了新的文献求助10
3分钟前
灵巧的大开完成签到,获得积分10
3分钟前
Jasper应助mmyhn采纳,获得10
3分钟前
在水一方应助lmgj采纳,获得10
3分钟前
顾矜应助lmgj采纳,获得10
3分钟前
上官若男应助lmgj采纳,获得10
3分钟前
华仔应助大方仙人掌采纳,获得10
3分钟前
爆米花应助灵巧的大开采纳,获得10
3分钟前
ASHhan111完成签到,获得积分10
3分钟前
科研通AI2S应助toto采纳,获得10
3分钟前
3分钟前
4分钟前
龙行天下完成签到 ,获得积分10
4分钟前
deswin完成签到 ,获得积分10
4分钟前
情怀应助羽宇采纳,获得10
5分钟前
111完成签到 ,获得积分10
5分钟前
NattyPoe应助科研通管家采纳,获得10
5分钟前
万能图书馆应助hongping采纳,获得10
5分钟前
搜集达人应助ceeray23采纳,获得20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875880
求助须知:如何正确求助?哪些是违规求助? 6522248
关于积分的说明 15677770
捐赠科研通 4993981
什么是DOI,文献DOI怎么找? 2691707
邀请新用户注册赠送积分活动 1633904
关于科研通互助平台的介绍 1591593