Early prediction of preeclampsia via machine learning

子痫前期 医学 胎龄 假阳性率 置信区间 机器学习 接收机工作特性 Boosting(机器学习) 预测建模 回顾性队列研究 计算机科学 梯度升压 人工智能 怀孕 内科学 随机森林 遗传学 生物
作者
Ivana Marić,Abraham Tsur,Nima Aghaeepour,Andrea Montanari,David K. Stevenson,Gary M. Shaw,Virginia D. Winn
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier BV]
卷期号:2 (2): 100100-100100 被引量:77
标识
DOI:10.1016/j.ajogmf.2020.100100
摘要

Background

Early prediction of preeclampsia is challenging because of poorly understood causes, various risk factors, and likely multiple pathogenic phenotypes of preeclampsia. Statistical learning methods are well-equipped to deal with a large number of variables, such as patients' clinical and laboratory data, and to select the most informative features automatically.

Objective

Our objective was to use statistical learning methods to analyze all available clinical and laboratory data that were obtained during routine prenatal visits in early pregnancy and to use them to develop a prediction model for preeclampsia.

Study Design

This was a retrospective cohort study that used data from 16,370 births at Lucile Packard Children Hospital at Stanford, CA, from April 2014 to January 2018. Two statistical learning algorithms were used to build a predictive model: (1) elastic net and (2) gradient boosting algorithm. Models for all preeclampsia and early-onset preeclampsia (<34 weeks gestation) were fitted with the use of patient data that were available at <16 weeks gestational age. The 67 variables that were considered in the models included maternal characteristics, medical history, routine prenatal laboratory results, and medication intake. The area under the receiver operator curve, true-positive rate, and false-positive rate were assessed via cross-validation.

Results

Using the elastic net algorithm, we developed a prediction model that contained a subset of the most informative features from all variables. The obtained prediction model for preeclampsia yielded an area under the curve of 0.79 (95% confidence interval, 0.75–0.83), sensitivity of 45.2%, and false-positive rate of 8.1%. The prediction model for early-onset preeclampsia achieved an area under the curve of 0.89 (95% confidence interval, 0.84–0.95), true-positive rate of 72.3%, and false-positive rate of 8.8%.

Conclusion

Statistical learning methods in a retrospective cohort study automatically identified a set of significant features for prediction and yielded high prediction performance for preeclampsia risk from routine early pregnancy information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuzhu发布了新的文献求助10
刚刚
1秒前
慕青应助不安的秋白采纳,获得10
1秒前
iii发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
称心寒松发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
yehaidadao完成签到,获得积分10
2秒前
欢呼妙菱发布了新的文献求助10
4秒前
4秒前
MizzZeus完成签到,获得积分10
4秒前
4秒前
善学以致用应助up采纳,获得10
4秒前
5秒前
ll发布了新的文献求助10
5秒前
星辰大海应助蚕宝宝小子采纳,获得10
6秒前
雪白的面包完成签到 ,获得积分10
7秒前
类囊体薄膜完成签到,获得积分10
7秒前
absb完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
大个应助Forez采纳,获得10
8秒前
王小元发布了新的文献求助10
8秒前
pincoudegushi发布了新的文献求助10
8秒前
9秒前
yx_cheng应助自觉妖妖采纳,获得30
11秒前
光亮青柏完成签到 ,获得积分10
11秒前
11秒前
namk完成签到,获得积分10
12秒前
Momo发布了新的文献求助10
12秒前
昏睡的蟠桃应助巫凝天采纳,获得300
12秒前
星辰大海应助T拐拐采纳,获得10
13秒前
13秒前
Bio应助美好斓采纳,获得30
14秒前
14秒前
14秒前
ll完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650