Early prediction of preeclampsia via machine learning

子痫前期 医学 胎龄 假阳性率 置信区间 机器学习 接收机工作特性 Boosting(机器学习) 预测建模 回顾性队列研究 计算机科学 梯度升压 人工智能 怀孕 内科学 随机森林 遗传学 生物
作者
Ivana Marić,Abraham Tsur,Nima Aghaeepour,Andrea Montanari,David K. Stevenson,Gary M. Shaw,Virginia D. Winn
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier BV]
卷期号:2 (2): 100100-100100 被引量:77
标识
DOI:10.1016/j.ajogmf.2020.100100
摘要

Background

Early prediction of preeclampsia is challenging because of poorly understood causes, various risk factors, and likely multiple pathogenic phenotypes of preeclampsia. Statistical learning methods are well-equipped to deal with a large number of variables, such as patients' clinical and laboratory data, and to select the most informative features automatically.

Objective

Our objective was to use statistical learning methods to analyze all available clinical and laboratory data that were obtained during routine prenatal visits in early pregnancy and to use them to develop a prediction model for preeclampsia.

Study Design

This was a retrospective cohort study that used data from 16,370 births at Lucile Packard Children Hospital at Stanford, CA, from April 2014 to January 2018. Two statistical learning algorithms were used to build a predictive model: (1) elastic net and (2) gradient boosting algorithm. Models for all preeclampsia and early-onset preeclampsia (<34 weeks gestation) were fitted with the use of patient data that were available at <16 weeks gestational age. The 67 variables that were considered in the models included maternal characteristics, medical history, routine prenatal laboratory results, and medication intake. The area under the receiver operator curve, true-positive rate, and false-positive rate were assessed via cross-validation.

Results

Using the elastic net algorithm, we developed a prediction model that contained a subset of the most informative features from all variables. The obtained prediction model for preeclampsia yielded an area under the curve of 0.79 (95% confidence interval, 0.75–0.83), sensitivity of 45.2%, and false-positive rate of 8.1%. The prediction model for early-onset preeclampsia achieved an area under the curve of 0.89 (95% confidence interval, 0.84–0.95), true-positive rate of 72.3%, and false-positive rate of 8.8%.

Conclusion

Statistical learning methods in a retrospective cohort study automatically identified a set of significant features for prediction and yielded high prediction performance for preeclampsia risk from routine early pregnancy information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助张原铭采纳,获得10
1秒前
123发布了新的文献求助10
1秒前
QQQQ完成签到,获得积分10
2秒前
2秒前
2秒前
yangmaimai完成签到,获得积分20
2秒前
shi hui发布了新的文献求助10
2秒前
浪者漫心发布了新的文献求助10
3秒前
充电宝应助jia采纳,获得10
3秒前
研酒生完成签到,获得积分10
3秒前
3秒前
3秒前
liuhll完成签到,获得积分20
3秒前
4秒前
4秒前
小魏完成签到,获得积分10
4秒前
传奇3应助橘子味汽水采纳,获得10
4秒前
小小雪完成签到 ,获得积分10
4秒前
4秒前
无花果应助美丽的德地采纳,获得30
4秒前
DepengZhang发布了新的文献求助10
5秒前
ww完成签到 ,获得积分10
6秒前
大个应助秋浱采纳,获得10
6秒前
墨丿筠发布了新的文献求助10
6秒前
6秒前
孤独的访旋给孤独的访旋的求助进行了留言
7秒前
手帕很忙完成签到,获得积分10
7秒前
Tian发布了新的文献求助30
7秒前
8秒前
Huying发布了新的文献求助10
8秒前
8秒前
科研通AI5应助shi hui采纳,获得10
9秒前
10秒前
DI发布了新的文献求助30
10秒前
菌菌完成签到,获得积分10
10秒前
李健应助唐唐采纳,获得30
10秒前
11秒前
12秒前
12秒前
Charlie发布了新的文献求助50
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105