Early prediction of preeclampsia via machine learning

子痫前期 医学 胎龄 假阳性率 置信区间 机器学习 接收机工作特性 Boosting(机器学习) 预测建模 回顾性队列研究 计算机科学 梯度升压 人工智能 怀孕 内科学 随机森林 遗传学 生物
作者
Ivana Marić,Abraham Tsur,Nima Aghaeepour,Andrea Montanari,David K. Stevenson,Gary M. Shaw,Virginia D. Winn
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:2 (2): 100100-100100 被引量:77
标识
DOI:10.1016/j.ajogmf.2020.100100
摘要

Background

Early prediction of preeclampsia is challenging because of poorly understood causes, various risk factors, and likely multiple pathogenic phenotypes of preeclampsia. Statistical learning methods are well-equipped to deal with a large number of variables, such as patients' clinical and laboratory data, and to select the most informative features automatically.

Objective

Our objective was to use statistical learning methods to analyze all available clinical and laboratory data that were obtained during routine prenatal visits in early pregnancy and to use them to develop a prediction model for preeclampsia.

Study Design

This was a retrospective cohort study that used data from 16,370 births at Lucile Packard Children Hospital at Stanford, CA, from April 2014 to January 2018. Two statistical learning algorithms were used to build a predictive model: (1) elastic net and (2) gradient boosting algorithm. Models for all preeclampsia and early-onset preeclampsia (<34 weeks gestation) were fitted with the use of patient data that were available at <16 weeks gestational age. The 67 variables that were considered in the models included maternal characteristics, medical history, routine prenatal laboratory results, and medication intake. The area under the receiver operator curve, true-positive rate, and false-positive rate were assessed via cross-validation.

Results

Using the elastic net algorithm, we developed a prediction model that contained a subset of the most informative features from all variables. The obtained prediction model for preeclampsia yielded an area under the curve of 0.79 (95% confidence interval, 0.75–0.83), sensitivity of 45.2%, and false-positive rate of 8.1%. The prediction model for early-onset preeclampsia achieved an area under the curve of 0.89 (95% confidence interval, 0.84–0.95), true-positive rate of 72.3%, and false-positive rate of 8.8%.

Conclusion

Statistical learning methods in a retrospective cohort study automatically identified a set of significant features for prediction and yielded high prediction performance for preeclampsia risk from routine early pregnancy information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
米米米发布了新的文献求助10
2秒前
弥途发布了新的文献求助10
3秒前
bkagyin应助smile采纳,获得10
3秒前
Phyllis发布了新的文献求助10
4秒前
森森完成签到 ,获得积分10
4秒前
5秒前
完美世界应助米米米采纳,获得10
5秒前
6秒前
jtG完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
李健应助闲看花季采纳,获得10
9秒前
自信的坤发布了新的文献求助10
11秒前
11秒前
阿巴阿巴发布了新的文献求助30
12秒前
弥途完成签到,获得积分10
12秒前
12秒前
黛寒发布了新的文献求助10
13秒前
郝瑞之发布了新的文献求助10
14秒前
洒脱鲲完成签到,获得积分10
15秒前
zhangst发布了新的文献求助10
15秒前
lzy关闭了lzy文献求助
16秒前
19秒前
20秒前
21秒前
妖怪大大应助打败拖延症采纳,获得10
22秒前
汉德萌多林完成签到,获得积分10
23秒前
Elephes发布了新的文献求助200
24秒前
2123121321321发布了新的文献求助10
24秒前
jonathan发布了新的文献求助10
24秒前
25秒前
苏书白应助jianni采纳,获得10
26秒前
26秒前
郝瑞之完成签到,获得积分20
26秒前
27秒前
lyz发布了新的文献求助10
28秒前
缥缈的青旋完成签到 ,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706