Early prediction of preeclampsia via machine learning

子痫前期 医学 胎龄 假阳性率 置信区间 机器学习 接收机工作特性 Boosting(机器学习) 预测建模 回顾性队列研究 计算机科学 梯度升压 人工智能 怀孕 内科学 随机森林 遗传学 生物
作者
Ivana Marić,Abraham Tsur,Nima Aghaeepour,Andrea Montanari,David K. Stevenson,Gary M. Shaw,Virginia D. Winn
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:2 (2): 100100-100100 被引量:77
标识
DOI:10.1016/j.ajogmf.2020.100100
摘要

Background

Early prediction of preeclampsia is challenging because of poorly understood causes, various risk factors, and likely multiple pathogenic phenotypes of preeclampsia. Statistical learning methods are well-equipped to deal with a large number of variables, such as patients' clinical and laboratory data, and to select the most informative features automatically.

Objective

Our objective was to use statistical learning methods to analyze all available clinical and laboratory data that were obtained during routine prenatal visits in early pregnancy and to use them to develop a prediction model for preeclampsia.

Study Design

This was a retrospective cohort study that used data from 16,370 births at Lucile Packard Children Hospital at Stanford, CA, from April 2014 to January 2018. Two statistical learning algorithms were used to build a predictive model: (1) elastic net and (2) gradient boosting algorithm. Models for all preeclampsia and early-onset preeclampsia (<34 weeks gestation) were fitted with the use of patient data that were available at <16 weeks gestational age. The 67 variables that were considered in the models included maternal characteristics, medical history, routine prenatal laboratory results, and medication intake. The area under the receiver operator curve, true-positive rate, and false-positive rate were assessed via cross-validation.

Results

Using the elastic net algorithm, we developed a prediction model that contained a subset of the most informative features from all variables. The obtained prediction model for preeclampsia yielded an area under the curve of 0.79 (95% confidence interval, 0.75–0.83), sensitivity of 45.2%, and false-positive rate of 8.1%. The prediction model for early-onset preeclampsia achieved an area under the curve of 0.89 (95% confidence interval, 0.84–0.95), true-positive rate of 72.3%, and false-positive rate of 8.8%.

Conclusion

Statistical learning methods in a retrospective cohort study automatically identified a set of significant features for prediction and yielded high prediction performance for preeclampsia risk from routine early pregnancy information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助艺玲采纳,获得10
刚刚
hobowei发布了新的文献求助10
1秒前
梦里见陈情完成签到,获得积分10
1秒前
JJJ应助szh123采纳,获得10
1秒前
FFFFFFF应助细腻沅采纳,获得10
1秒前
ym发布了新的文献求助10
1秒前
Yn完成签到 ,获得积分10
2秒前
2秒前
秋季完成签到,获得积分10
3秒前
wwb完成签到,获得积分10
3秒前
张自信完成签到,获得积分10
4秒前
华仔应助VDC采纳,获得10
4秒前
嘟嘟完成签到,获得积分10
5秒前
卡卡完成签到,获得积分10
5秒前
5秒前
十三发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
甩看文献发布了新的文献求助10
6秒前
wang完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
LONG完成签到,获得积分10
8秒前
8秒前
甜蜜秋蝶完成签到,获得积分10
8秒前
9秒前
TT发布了新的文献求助10
10秒前
啊实打实发布了新的文献求助10
10秒前
yam001发布了新的文献求助30
11秒前
Stanley完成签到,获得积分10
11秒前
LONG发布了新的文献求助10
11秒前
亮亮发布了新的文献求助50
11秒前
LZQ应助细心的小蜜蜂采纳,获得30
12秒前
艺玲发布了新的文献求助10
12秒前
小二郎应助Seven采纳,获得10
12秒前
设计狂魔完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762