Early prediction of preeclampsia via machine learning

子痫前期 医学 胎龄 假阳性率 置信区间 机器学习 接收机工作特性 Boosting(机器学习) 预测建模 回顾性队列研究 计算机科学 梯度升压 人工智能 怀孕 内科学 随机森林 遗传学 生物
作者
Ivana Marić,Abraham Tsur,Nima Aghaeepour,Andrea Montanari,David K. Stevenson,Gary M. Shaw,Virginia D. Winn
出处
期刊:American Journal Of Obstetrics & Gynecology Mfm [Elsevier]
卷期号:2 (2): 100100-100100 被引量:77
标识
DOI:10.1016/j.ajogmf.2020.100100
摘要

Background

Early prediction of preeclampsia is challenging because of poorly understood causes, various risk factors, and likely multiple pathogenic phenotypes of preeclampsia. Statistical learning methods are well-equipped to deal with a large number of variables, such as patients' clinical and laboratory data, and to select the most informative features automatically.

Objective

Our objective was to use statistical learning methods to analyze all available clinical and laboratory data that were obtained during routine prenatal visits in early pregnancy and to use them to develop a prediction model for preeclampsia.

Study Design

This was a retrospective cohort study that used data from 16,370 births at Lucile Packard Children Hospital at Stanford, CA, from April 2014 to January 2018. Two statistical learning algorithms were used to build a predictive model: (1) elastic net and (2) gradient boosting algorithm. Models for all preeclampsia and early-onset preeclampsia (<34 weeks gestation) were fitted with the use of patient data that were available at <16 weeks gestational age. The 67 variables that were considered in the models included maternal characteristics, medical history, routine prenatal laboratory results, and medication intake. The area under the receiver operator curve, true-positive rate, and false-positive rate were assessed via cross-validation.

Results

Using the elastic net algorithm, we developed a prediction model that contained a subset of the most informative features from all variables. The obtained prediction model for preeclampsia yielded an area under the curve of 0.79 (95% confidence interval, 0.75–0.83), sensitivity of 45.2%, and false-positive rate of 8.1%. The prediction model for early-onset preeclampsia achieved an area under the curve of 0.89 (95% confidence interval, 0.84–0.95), true-positive rate of 72.3%, and false-positive rate of 8.8%.

Conclusion

Statistical learning methods in a retrospective cohort study automatically identified a set of significant features for prediction and yielded high prediction performance for preeclampsia risk from routine early pregnancy information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海之恋心完成签到 ,获得积分10
1秒前
17秒前
淞淞于我完成签到 ,获得积分10
22秒前
闪闪小小完成签到 ,获得积分10
24秒前
单纯的小土豆完成签到 ,获得积分10
32秒前
wBw完成签到,获得积分0
42秒前
Young完成签到 ,获得积分10
43秒前
数乱了梨花完成签到 ,获得积分0
44秒前
阳光溪流完成签到 ,获得积分10
52秒前
57秒前
shacodow完成签到,获得积分10
1分钟前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
1分钟前
没心没肺完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
sheetung完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
司连喜完成签到,获得积分10
1分钟前
波西米亚完成签到,获得积分10
1分钟前
顺利毕业完成签到 ,获得积分10
1分钟前
S.S.N完成签到 ,获得积分10
1分钟前
orixero应助乐观海云采纳,获得30
1分钟前
小欣子完成签到 ,获得积分10
1分钟前
w婷完成签到 ,获得积分10
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
1分钟前
乐观海云发布了新的文献求助30
1分钟前
花花完成签到 ,获得积分10
1分钟前
果酱发布了新的文献求助10
1分钟前
lkc完成签到,获得积分10
1分钟前
取法乎上完成签到 ,获得积分10
1分钟前
943034197完成签到,获得积分10
2分钟前
yy完成签到 ,获得积分0
2分钟前
orixero应助果酱采纳,获得10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347381
求助须知:如何正确求助?哪些是违规求助? 4481679
关于积分的说明 13947989
捐赠科研通 4379900
什么是DOI,文献DOI怎么找? 2406682
邀请新用户注册赠送积分活动 1399221
关于科研通互助平台的介绍 1372293