Investigating the performance of exploratory graph analysis and traditional techniques to identify the number of latent factors: A simulation and tutorial.

心理信息 绘图(图形) 计算机科学 图形 功率图分析 网络分析 探索性分析 统计 数据挖掘 心理学 数学 数据科学 理论计算机科学 梅德林 物理 法学 量子力学 政治学
作者
Hudson Golino,Dingjing Shi,Alexander P. Christensen,Luis Eduardo Garrido,María Dolores Nieto,Ritu Sadana,Jotheeswaran Amuthavalli Thiyagarajan,Agustín Martínez-Molina
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:25 (3): 292-320 被引量:284
标识
DOI:10.1037/met0000255
摘要

Exploratory graph analysis (EGA) is a new technique that was recently proposed within the framework of network psychometrics to estimate the number of factors underlying multivariate data. Unlike other methods, EGA produces a visual guide-network plot-that not only indicates the number of dimensions to retain, but also which items cluster together and their level of association. Although previous studies have found EGA to be superior to traditional methods, they are limited in the conditions considered. These issues are addressed through an extensive simulation study that incorporates a wide range of plausible structures that may be found in practice, including continuous and dichotomous data, and unidimensional and multidimensional structures. Additionally, two new EGA techniques are presented: one that extends EGA to also deal with unidimensional structures, and the other based on the triangulated maximally filtered graph approach (EGAtmfg). Both EGA techniques are compared with 5 widely used factor analytic techniques. Overall, EGA and EGAtmfg are found to perform as well as the most accurate traditional method, parallel analysis, and to produce the best large-sample properties of all the methods evaluated. To facilitate the use and application of EGA, we present a straightforward R tutorial on how to apply and interpret EGA, using scores from a well-known psychological instrument: the Marlowe-Crowne Social Desirability Scale. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
clientprogram应助科研通管家采纳,获得40
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Amu1uu应助科研通管家采纳,获得10
1秒前
勤劳冰烟应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
汉堡包应助刘刘采纳,获得10
2秒前
陈好好完成签到 ,获得积分10
3秒前
5秒前
山野村夫应助Yy采纳,获得10
7秒前
yang完成签到,获得积分10
8秒前
8秒前
可爱的函函应助CYXH采纳,获得10
9秒前
星禾吾发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
一天五顿饭完成签到,获得积分10
12秒前
Yuanyuan发布了新的文献求助20
12秒前
13秒前
sara发布了新的文献求助10
16秒前
PCRmachine发布了新的文献求助30
17秒前
清爽电脑完成签到,获得积分10
18秒前
silencegreen5发布了新的文献求助10
19秒前
21秒前
21秒前
24秒前
24秒前
25秒前
25秒前
PCRmachine完成签到,获得积分10
25秒前
CYXH发布了新的文献求助10
26秒前
朱瑶君完成签到,获得积分10
27秒前
白斯特发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952472
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11089109
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309