ThermoSim: Deep learning based framework for modeling and simulation of thermal-aware resource management for cloud computing environments

云计算 计算机科学 CloudSim公司 服务器 分布式计算 能源消耗 虚拟机 数据中心 工作量 资源管理(计算) 资源配置 高效能源利用 计算机网络 操作系统 工程类 电气工程
作者
Sukhpal Singh Gill,Shreshth Tuli,Adel N. Toosi,Félix Cuadrado,Peter Garraghan,Rami Bahsoon,Hanan Lutfiyya,Rizos Sakellariou,Omer Rana,Schahram Dustdar,Rajkumar Buyya
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:166: 110596-110596 被引量:11
标识
DOI:10.1016/j.jss.2020.110596
摘要

Current cloud computing frameworks host millions of physical servers that utilize cloud computing resources in the form of different virtual machines. Cloud Data Center (CDC) infrastructures require significant amounts of energy to deliver large scale computational services. Moreover, computing nodes generate large volumes of heat, requiring cooling units in turn to eliminate the effect of this heat. Thus, overall energy consumption of the CDC increases tremendously for servers as well as for cooling units. However, current workload allocation policies do not take into account effect on temperature and it is challenging to simulate the thermal behavior of CDCs. There is a need for a thermal-aware framework to simulate and model the behavior of nodes and measure the important performance parameters which can be affected by its temperature. In this paper, we propose a lightweight framework, ThermoSim, for modeling and simulation of thermal-aware resource management for cloud computing environments. This work presents a Recurrent Neural Network based deep learning temperature predictor for CDCs which is utilized by ThermoSim for lightweight resource management in constrained cloud environments. ThermoSim extends the CloudSim toolkit helping to analyze the performance of various key parameters such as energy consumption, service level agreement violation rate, number of virtual machine migrations and temperature during the management of cloud resources for execution of workloads. Further, different energy-aware and thermal-aware resource management techniques are tested using the proposed ThermoSim framework in order to validate it against the existing framework (Thas). The experimental results demonstrate the proposed framework is capable of modeling and simulating the thermal behavior of a CDC and ThermoSim framework is better than Thas in terms of energy consumption, cost, time, memory usage and prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助胡33采纳,获得10
2秒前
大个应助yyyy采纳,获得10
2秒前
昨夜星辰昨夜风完成签到 ,获得积分10
3秒前
4秒前
瘦瘦的睫毛膏完成签到,获得积分10
5秒前
星辰大海应助All采纳,获得10
5秒前
Binggui完成签到,获得积分10
6秒前
Ayuyu发布了新的文献求助10
6秒前
6秒前
苏卿应助LSS采纳,获得10
6秒前
呐钠发布了新的文献求助10
7秒前
a啊哈哈哈完成签到,获得积分10
7秒前
昨夜星辰昨夜风关注了科研通微信公众号
8秒前
8秒前
哒哒哒宰完成签到,获得积分10
8秒前
buder发布了新的文献求助10
9秒前
哈哈哈完成签到,获得积分10
9秒前
踏实的不愁完成签到,获得积分10
10秒前
11秒前
12秒前
自由涔发布了新的文献求助10
12秒前
13秒前
Lucky应助渣渣XM采纳,获得10
13秒前
满意的柏柳完成签到,获得积分10
14秒前
Ricardo完成签到 ,获得积分10
15秒前
予书完成签到,获得积分10
15秒前
秋子骞发布了新的文献求助10
15秒前
unique完成签到,获得积分10
16秒前
海潮发布了新的文献求助10
17秒前
任娜发布了新的文献求助10
17秒前
赘婿应助张豪杰采纳,获得10
17秒前
乐观无心完成签到,获得积分10
17秒前
MingqingFang应助yyyy采纳,获得10
18秒前
All发布了新的文献求助10
19秒前
19秒前
予书发布了新的文献求助30
19秒前
zppppp关注了科研通微信公众号
19秒前
瑞_发布了新的文献求助10
19秒前
21秒前
dong完成签到 ,获得积分10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012