Applying Causal Inference Methods in Psychiatric Epidemiology

因果推理 精神流行病学 推论 流行病学 精神科 心理学 梅德林 医学 计算机科学 人工智能 心理健康 内科学 政治学 病理 法学
作者
Henrik Ohlsson,Kenneth S. Kendler
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:77 (6): 637-637 被引量:74
标识
DOI:10.1001/jamapsychiatry.2019.3758
摘要

Importance Associations between putative risk factors and psychiatric and substance use disorders are widespread in the literature. Basing prevention efforts on such findings is hazardous. Applying causal inference methods, while challenging, is central to developing realistic and potentially actionable etiologic models for psychopathology. Observations Causal methods can be divided into randomized clinical trials (RCTs), natural experiments, and statistical models. The first 2 approaches can potentially control for both known and unknown confounders, while statistical methods control only for known and measured confounders. The criterion standard, RCTs, can have important limitations, especially regarding generalizability. Furthermore, for ethical reasons, many critical questions in psychiatric epidemiology cannot be addressed by RCTs. We review, with examples, methods that try to meet as-if randomization assumptions, use instrumental variables, or use pre-post designs, regression discontinuity designs, or co-relative designs. Each method has strengths and limitations, especially the plausibility of as-if randomization and generalizability. Of the large family of statistical methods for causal inference, we examine propensity scoring and marginal models, which are best applied to samples with strong predictors of risk factor exposure. Conclusions and Relevance Causal inference is important because it informs etiologic models and prevention efforts. The view that causation can be definitively resolved only with RCTs and that no other method can provide potentially useful inferences is simplistic. Rather, each method has varying strengths and limitations. We need to avoid the extremes of overzealous causal claims and the cynical view that potential causal information is unattainable when RCTs are infeasible. Triangulation, which applies different methods for elucidating causal inferences to address to the same question, may increase confidence in the resulting causal claims.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心映天完成签到,获得积分10
1秒前
gnwnb完成签到,获得积分10
1秒前
WG应助可cabd采纳,获得10
1秒前
Liz完成签到 ,获得积分10
2秒前
自由路发布了新的文献求助10
2秒前
2秒前
user_huang完成签到,获得积分10
3秒前
phl发布了新的文献求助10
4秒前
狂野书易发布了新的文献求助10
5秒前
5秒前
5秒前
TT完成签到,获得积分10
5秒前
Xxx发布了新的文献求助10
5秒前
时尚的细菌完成签到,获得积分10
6秒前
Owen应助Jacob采纳,获得10
7秒前
称心映天发布了新的文献求助10
7秒前
金jin完成签到,获得积分10
7秒前
SciGPT应助我要发十篇sci采纳,获得10
8秒前
努力的打工人完成签到,获得积分10
8秒前
大模型应助liclic采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
研友_VZG7GZ应助诸葛晴天采纳,获得10
11秒前
11秒前
Yan完成签到,获得积分10
12秒前
12秒前
12秒前
yyauthor发布了新的文献求助10
13秒前
自由路完成签到,获得积分10
13秒前
NexusExplorer应助无辜的惜寒采纳,获得10
13秒前
香芋派发布了新的文献求助10
14秒前
14秒前
大个应助ttlash采纳,获得10
15秒前
15秒前
15秒前
acuis发布了新的文献求助30
15秒前
LM发布了新的文献求助10
16秒前
MIMIXUAN发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157277
求助须知:如何正确求助?哪些是违规求助? 2808570
关于积分的说明 7877973
捐赠科研通 2467049
什么是DOI,文献DOI怎么找? 1313150
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919