Applying Causal Inference Methods in Psychiatric Epidemiology

因果推理 精神流行病学 推论 流行病学 精神科 心理学 梅德林 医学 计算机科学 人工智能 心理健康 内科学 政治学 病理 法学
作者
Henrik Ohlsson,Kenneth S. Kendler
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:77 (6): 637-637 被引量:74
标识
DOI:10.1001/jamapsychiatry.2019.3758
摘要

Importance Associations between putative risk factors and psychiatric and substance use disorders are widespread in the literature. Basing prevention efforts on such findings is hazardous. Applying causal inference methods, while challenging, is central to developing realistic and potentially actionable etiologic models for psychopathology. Observations Causal methods can be divided into randomized clinical trials (RCTs), natural experiments, and statistical models. The first 2 approaches can potentially control for both known and unknown confounders, while statistical methods control only for known and measured confounders. The criterion standard, RCTs, can have important limitations, especially regarding generalizability. Furthermore, for ethical reasons, many critical questions in psychiatric epidemiology cannot be addressed by RCTs. We review, with examples, methods that try to meet as-if randomization assumptions, use instrumental variables, or use pre-post designs, regression discontinuity designs, or co-relative designs. Each method has strengths and limitations, especially the plausibility of as-if randomization and generalizability. Of the large family of statistical methods for causal inference, we examine propensity scoring and marginal models, which are best applied to samples with strong predictors of risk factor exposure. Conclusions and Relevance Causal inference is important because it informs etiologic models and prevention efforts. The view that causation can be definitively resolved only with RCTs and that no other method can provide potentially useful inferences is simplistic. Rather, each method has varying strengths and limitations. We need to avoid the extremes of overzealous causal claims and the cynical view that potential causal information is unattainable when RCTs are infeasible. Triangulation, which applies different methods for elucidating causal inferences to address to the same question, may increase confidence in the resulting causal claims.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎健身完成签到 ,获得积分10
1秒前
深情安青应助股价采纳,获得30
2秒前
小鱼完成签到 ,获得积分10
5秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
woods完成签到,获得积分10
14秒前
顺利问玉完成签到 ,获得积分10
14秒前
dididi发布了新的文献求助20
15秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
31秒前
37秒前
凉面完成签到 ,获得积分10
40秒前
fkdbdy发布了新的文献求助10
42秒前
科研通AI2S应助jinx采纳,获得10
43秒前
午后狂睡完成签到 ,获得积分10
44秒前
51秒前
液晶屏99完成签到,获得积分10
54秒前
58秒前
ShuY发布了新的文献求助10
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
ShuY完成签到,获得积分10
1分钟前
mojojo完成签到 ,获得积分10
1分钟前
1分钟前
江三村完成签到 ,获得积分10
1分钟前
青山完成签到 ,获得积分10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
wanci应助抗体药物偶联采纳,获得10
1分钟前
桐桐应助抗体药物偶联采纳,获得10
2分钟前
2分钟前
麦田麦兜完成签到,获得积分10
2分钟前
852应助善良语雪采纳,获得10
2分钟前
2分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
2分钟前
股价发布了新的文献求助30
2分钟前
善良语雪发布了新的文献求助10
2分钟前
爆米花应助股价采纳,获得10
2分钟前
科研通AI5应助zhscu采纳,获得10
2分钟前
2分钟前
chenxi完成签到 ,获得积分10
2分钟前
善良语雪完成签到,获得积分10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155787
捐赠科研通 3245462
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247