Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image

多光谱图像 植被(病理学) 混淆矩阵 人工智能 特征(语言学) 遥感 主成分分析 纹理(宇宙学) 计算机科学 模式识别(心理学) 环境科学 计算机视觉 地理 图像(数学) 病理 哲学 医学 语言学
作者
Qian Sun,Lin Sun,Meiyan Shu,Xiaohe Gu,Guijun Yang,Longfei Zhou
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:2019 被引量:45
标识
DOI:10.34133/2019/5704154
摘要

Lodging is one of the main factors affecting the quality and yield of crops. Timely and accurate determination of crop lodging grade is of great significance for the quantitative and objective evaluation of yield losses. The purpose of this study was to analyze the monitoring ability of a multispectral image obtained by an unmanned aerial vehicle (UAV) for determination of the maize lodging grade. A multispectral Parrot Sequoia camera is specially designed for agricultural applications and provides new information that is useful in agricultural decision-making. Indeed, a near-infrared image which cannot be seen with the naked eye can be used to make a highly precise diagnosis of the vegetation condition. The images obtained constitute a highly effective tool for analyzing plant health. Maize samples with different lodging grades were obtained by visual interpretation, and the spectral reflectance, texture feature parameters, and vegetation indices of the training samples were extracted. Different feature transformations were performed, texture features and vegetation indices were combined, and various feature images were classified by maximum likelihood classification (MLC) to extract four lodging grades. Classification accuracy was evaluated using a confusion matrix based on the verification samples, and the features suitable for monitoring the maize lodging grade were screened. The results showed that compared with a multispectral image, the principal components, texture features, and combination of texture features and vegetation indices were improved by varying degrees. The overall accuracy of the combination of texture features and vegetation indices is 86.61%, and the Kappa coefficient is 0.8327, which is higher than that of other features. Therefore, the classification result based on the feature combinations of the UAV multispectral image is useful for monitoring of maize lodging grades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY230512完成签到,获得积分20
1秒前
1秒前
卡皮巴拉发布了新的文献求助10
2秒前
yk发布了新的文献求助10
3秒前
Orange应助xue采纳,获得10
5秒前
可爱的函函应助尊敬寒松采纳,获得10
5秒前
笑点低的发箍完成签到,获得积分10
8秒前
Double_N完成签到,获得积分10
8秒前
青青青青稚完成签到,获得积分10
10秒前
zhuling完成签到,获得积分10
10秒前
Mayday发布了新的文献求助10
11秒前
11秒前
抹茶不迷糊完成签到,获得积分10
15秒前
尊敬寒松发布了新的文献求助10
16秒前
CipherSage应助lc采纳,获得10
17秒前
18秒前
桐桐应助wlei采纳,获得10
19秒前
月球宇航员完成签到,获得积分10
20秒前
只要平凡发布了新的文献求助10
20秒前
21秒前
21秒前
骅骝发布了新的文献求助10
24秒前
25秒前
爆米花应助酷酷小子采纳,获得10
25秒前
大模型应助酷酷小子采纳,获得10
26秒前
XuX完成签到 ,获得积分10
27秒前
lante发布了新的文献求助10
28秒前
lc发布了新的文献求助10
29秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
8R60d8应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
30秒前
8R60d8应助科研通管家采纳,获得10
30秒前
从容芮应助科研通管家采纳,获得30
30秒前
情怀应助科研通管家采纳,获得30
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
大个应助科研通管家采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712