Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image

多光谱图像 植被(病理学) 混淆矩阵 人工智能 特征(语言学) 遥感 主成分分析 纹理(宇宙学) 计算机科学 模式识别(心理学) 环境科学 计算机视觉 地理 图像(数学) 医学 语言学 哲学 病理
作者
Qian Sun,Lin Sun,Meiyan Shu,Xiaohe Gu,Guijun Yang,Longfei Zhou
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:2019 被引量:45
标识
DOI:10.34133/2019/5704154
摘要

Lodging is one of the main factors affecting the quality and yield of crops. Timely and accurate determination of crop lodging grade is of great significance for the quantitative and objective evaluation of yield losses. The purpose of this study was to analyze the monitoring ability of a multispectral image obtained by an unmanned aerial vehicle (UAV) for determination of the maize lodging grade. A multispectral Parrot Sequoia camera is specially designed for agricultural applications and provides new information that is useful in agricultural decision-making. Indeed, a near-infrared image which cannot be seen with the naked eye can be used to make a highly precise diagnosis of the vegetation condition. The images obtained constitute a highly effective tool for analyzing plant health. Maize samples with different lodging grades were obtained by visual interpretation, and the spectral reflectance, texture feature parameters, and vegetation indices of the training samples were extracted. Different feature transformations were performed, texture features and vegetation indices were combined, and various feature images were classified by maximum likelihood classification (MLC) to extract four lodging grades. Classification accuracy was evaluated using a confusion matrix based on the verification samples, and the features suitable for monitoring the maize lodging grade were screened. The results showed that compared with a multispectral image, the principal components, texture features, and combination of texture features and vegetation indices were improved by varying degrees. The overall accuracy of the combination of texture features and vegetation indices is 86.61%, and the Kappa coefficient is 0.8327, which is higher than that of other features. Therefore, the classification result based on the feature combinations of the UAV multispectral image is useful for monitoring of maize lodging grades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
changping应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Miku应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
zj发布了新的文献求助10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
慕青应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
迷路达发布了新的文献求助10
1秒前
所所应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
115566应助科研通管家采纳,获得500
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Miku应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
忌辛辣发布了新的文献求助10
2秒前
小马甲应助wzt采纳,获得10
2秒前
2秒前
3秒前
周城发布了新的文献求助10
3秒前
哈哈哈完成签到,获得积分10
4秒前
Orange应助Chenzhs采纳,获得30
4秒前
mx发布了新的文献求助10
4秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414