Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image

多光谱图像 植被(病理学) 混淆矩阵 人工智能 特征(语言学) 遥感 主成分分析 纹理(宇宙学) 计算机科学 模式识别(心理学) 环境科学 计算机视觉 地理 图像(数学) 医学 语言学 哲学 病理
作者
Qian Sun,Lin Sun,Meiyan Shu,Xiaohe Gu,Guijun Yang,Longfei Zhou
出处
期刊:Plant phenomics [AAAS00]
卷期号:2019 被引量:45
标识
DOI:10.34133/2019/5704154
摘要

Lodging is one of the main factors affecting the quality and yield of crops. Timely and accurate determination of crop lodging grade is of great significance for the quantitative and objective evaluation of yield losses. The purpose of this study was to analyze the monitoring ability of a multispectral image obtained by an unmanned aerial vehicle (UAV) for determination of the maize lodging grade. A multispectral Parrot Sequoia camera is specially designed for agricultural applications and provides new information that is useful in agricultural decision-making. Indeed, a near-infrared image which cannot be seen with the naked eye can be used to make a highly precise diagnosis of the vegetation condition. The images obtained constitute a highly effective tool for analyzing plant health. Maize samples with different lodging grades were obtained by visual interpretation, and the spectral reflectance, texture feature parameters, and vegetation indices of the training samples were extracted. Different feature transformations were performed, texture features and vegetation indices were combined, and various feature images were classified by maximum likelihood classification (MLC) to extract four lodging grades. Classification accuracy was evaluated using a confusion matrix based on the verification samples, and the features suitable for monitoring the maize lodging grade were screened. The results showed that compared with a multispectral image, the principal components, texture features, and combination of texture features and vegetation indices were improved by varying degrees. The overall accuracy of the combination of texture features and vegetation indices is 86.61%, and the Kappa coefficient is 0.8327, which is higher than that of other features. Therefore, the classification result based on the feature combinations of the UAV multispectral image is useful for monitoring of maize lodging grades.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程容纬发布了新的文献求助10
2秒前
上官若男应助小幸运采纳,获得10
2秒前
3秒前
3秒前
科研通AI6应助culiucabbage采纳,获得10
3秒前
搜集达人应助摇摆小狗采纳,获得10
4秒前
小A发布了新的文献求助10
4秒前
隐形曼青应助学术污点采纳,获得10
4秒前
4秒前
5秒前
6秒前
大个应助zh采纳,获得10
6秒前
彭于晏应助houxufeng采纳,获得10
7秒前
7秒前
xuxin完成签到 ,获得积分10
8秒前
Nnn发布了新的文献求助10
8秒前
9秒前
9秒前
易今发布了新的文献求助10
10秒前
独一无二发布了新的文献求助10
11秒前
12秒前
my发布了新的文献求助10
12秒前
13秒前
zhao完成签到,获得积分10
13秒前
Mic应助单纯采纳,获得10
13秒前
14秒前
小幸运发布了新的文献求助10
15秒前
科研66666完成签到 ,获得积分10
15秒前
科研通AI6应助踏实雪枫采纳,获得10
15秒前
科目三应助juligulu采纳,获得30
16秒前
17秒前
小小台yeah发布了新的文献求助10
18秒前
19秒前
19秒前
科研通AI2S应助丶huasheng采纳,获得10
20秒前
20秒前
21秒前
21秒前
称心香薇完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589694
求助须知:如何正确求助?哪些是违规求助? 4674337
关于积分的说明 14793127
捐赠科研通 4628980
什么是DOI,文献DOI怎么找? 2532400
邀请新用户注册赠送积分活动 1501066
关于科研通互助平台的介绍 1468487