Monitoring Maize Lodging Grades via Unmanned Aerial Vehicle Multispectral Image

多光谱图像 植被(病理学) 混淆矩阵 人工智能 特征(语言学) 遥感 主成分分析 纹理(宇宙学) 计算机科学 模式识别(心理学) 环境科学 计算机视觉 地理 图像(数学) 病理 哲学 医学 语言学
作者
Qian Sun,Lin Sun,Meiyan Shu,Xiaohe Gu,Guijun Yang,Longfei Zhou
出处
期刊:Plant phenomics [AAAS00]
卷期号:2019 被引量:45
标识
DOI:10.34133/2019/5704154
摘要

Lodging is one of the main factors affecting the quality and yield of crops. Timely and accurate determination of crop lodging grade is of great significance for the quantitative and objective evaluation of yield losses. The purpose of this study was to analyze the monitoring ability of a multispectral image obtained by an unmanned aerial vehicle (UAV) for determination of the maize lodging grade. A multispectral Parrot Sequoia camera is specially designed for agricultural applications and provides new information that is useful in agricultural decision-making. Indeed, a near-infrared image which cannot be seen with the naked eye can be used to make a highly precise diagnosis of the vegetation condition. The images obtained constitute a highly effective tool for analyzing plant health. Maize samples with different lodging grades were obtained by visual interpretation, and the spectral reflectance, texture feature parameters, and vegetation indices of the training samples were extracted. Different feature transformations were performed, texture features and vegetation indices were combined, and various feature images were classified by maximum likelihood classification (MLC) to extract four lodging grades. Classification accuracy was evaluated using a confusion matrix based on the verification samples, and the features suitable for monitoring the maize lodging grade were screened. The results showed that compared with a multispectral image, the principal components, texture features, and combination of texture features and vegetation indices were improved by varying degrees. The overall accuracy of the combination of texture features and vegetation indices is 86.61%, and the Kappa coefficient is 0.8327, which is higher than that of other features. Therefore, the classification result based on the feature combinations of the UAV multispectral image is useful for monitoring of maize lodging grades.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大家好完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
yangliwei完成签到,获得积分10
3秒前
兔农糖完成签到,获得积分10
4秒前
4秒前
付艳完成签到,获得积分10
4秒前
5秒前
Quincy完成签到,获得积分10
5秒前
聪明球球发布了新的文献求助10
6秒前
6秒前
SciGPT应助dj采纳,获得10
6秒前
深情安青应助kiki采纳,获得10
7秒前
科研通AI2S应助hao123采纳,获得10
7秒前
牧子睿发布了新的文献求助10
7秒前
wuyoucaoxin完成签到,获得积分10
7秒前
9秒前
gao完成签到,获得积分10
9秒前
大鲨鱼完成签到 ,获得积分10
10秒前
10秒前
我想当二郎神完成签到,获得积分10
10秒前
zy123发布了新的文献求助10
10秒前
Quincy发布了新的文献求助10
10秒前
天天快乐应助yangxt-iga采纳,获得10
11秒前
心台应助myb采纳,获得30
11秒前
12秒前
CodeCraft应助lulu采纳,获得10
12秒前
March完成签到,获得积分10
12秒前
披萨红应助初余采纳,获得10
13秒前
阿花完成签到,获得积分10
14秒前
Wonder完成签到,获得积分10
15秒前
醉熏的井发布了新的文献求助10
16秒前
16秒前
HHM发布了新的文献求助10
17秒前
17秒前
斯文败类应助tkdzjr12345采纳,获得10
17秒前
18秒前
幸福大白发布了新的文献求助30
19秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218457
求助须知:如何正确求助?哪些是违规求助? 2867704
关于积分的说明 8157719
捐赠科研通 2534685
什么是DOI,文献DOI怎么找? 1367140
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618123