Elucidation of DNA methylation on N6-adenine with deep learning

生物 生物信息学 DNA甲基化 黑腹果蝇 深度测序 背景(考古学) 基因组 DNA 计算生物学 遗传学 基因 基因表达 古生物学
作者
Fei Tan,Tian Tian,Xiurui Hou,Xiang Yu,Lei Gu,Fernanda Mafra,Brian D. Gregory,Zhi Wei,Hákon Hákonarson
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:2 (8): 466-475 被引量:9
标识
DOI:10.1038/s42256-020-0211-4
摘要

Research on DNA methylation on N6-adenine (6mA) in eukaryotes has received much recent attention. Recent studies have generated a large amount of 6mA genomic data, yet the role of DNA 6mA in eukaryotes remains elusive, or even controversial. We argue that the sparsity of DNA 6mA in eukaryotes, the limitations of current biotechnologies for 6mA detection and the sophistication of the 6mA regulatory mechanism together pose great challenges for elucidation of DNA 6mA. To exploit existing 6mA genomic data and address this challenge, here we develop a deep-learning-based algorithm for predicting potential DNA 6mA sites de novo from sequence at single-nucleotide resolution, with application to three representative model organisms, Arabidopsis thaliana, Drosophila melanogaster and Escherichia coli. Extensive experiments demonstrate the accuracy of our algorithm and its superior performance compared with conventional k-mer-based approaches. Furthermore, our saliency maps-based context analysis protocol reveals interesting cis-regulatory patterns around the 6mA sites that are missed by conventional motif analysis. Our proposed analytical tools and findings will help to elucidate the regulatory mechanisms of 6mA and benefit the in-depth exploration of their functional effects. Finally, we offer a complete catalogue of potential 6mA sites based on in silico whole-genome prediction. The role of DNA methylation on N6-adenine (6mA) in eukaryotes is a challenging research problem. Tan et al. develop a deep-learning-based algorithm to predict 6mA sites from sequences at single-nucleotide resolution, and apply the method to three representative model organisms. The method is further developed to visualize regulatory patterns around 6mA sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gqb完成签到,获得积分10
刚刚
书是人类进步的阶梯完成签到 ,获得积分10
刚刚
1秒前
家向松完成签到,获得积分10
2秒前
Aurora完成签到,获得积分10
3秒前
Jj完成签到,获得积分10
3秒前
任性的半凡完成签到,获得积分10
3秒前
跳跳虎完成签到 ,获得积分10
7秒前
大吴克发布了新的文献求助10
7秒前
饱满若灵发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
好好学习完成签到,获得积分10
9秒前
有有完成签到 ,获得积分10
10秒前
天上掉下篇NCS完成签到,获得积分10
11秒前
冷静曲奇完成签到 ,获得积分10
14秒前
xwx发布了新的文献求助10
14秒前
14秒前
清玄一叶发布了新的文献求助10
14秒前
ZZWSWJ发布了新的文献求助10
15秒前
everyone_woo完成签到,获得积分10
18秒前
wangxuan完成签到,获得积分10
19秒前
饱满若灵完成签到,获得积分10
22秒前
岩中花树完成签到,获得积分20
22秒前
22秒前
大吴克发布了新的文献求助10
23秒前
ZZWSWJ完成签到,获得积分10
24秒前
25秒前
xiaoguang li完成签到,获得积分10
26秒前
打打应助xwx采纳,获得10
26秒前
科研搬运工完成签到,获得积分10
27秒前
找文献呢完成签到,获得积分10
28秒前
难过的钥匙完成签到 ,获得积分10
28秒前
小young完成签到 ,获得积分10
29秒前
all发布了新的文献求助10
30秒前
宝木小草刀完成签到,获得积分10
32秒前
Tohka完成签到 ,获得积分10
34秒前
发嗲的雨筠完成签到,获得积分10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571404
求助须知:如何正确求助?哪些是违规求助? 3141954
关于积分的说明 9445076
捐赠科研通 2843424
什么是DOI,文献DOI怎么找? 1562840
邀请新用户注册赠送积分活动 731366
科研通“疑难数据库(出版商)”最低求助积分说明 718524