自编码
弹道
计算机科学
相似性(几何)
光学(聚焦)
比例(比率)
人工智能
对抗制
生成语法
机器学习
生成对抗网络
生成模型
数据挖掘
深度学习
光学
物理
图像(数学)
量子力学
天文
作者
Xinyu Chen,Jiajie Xu,Rui Zhou,Wei Chen,Junhua Fang,Chengfei Liu
出处
期刊:Neurocomputing
[Elsevier BV]
日期:2021-03-01
卷期号:428: 332-339
被引量:53
标识
DOI:10.1016/j.neucom.2020.03.120
摘要
Large-scale trajectory dataset is always required for self-driving and many other applications. In this paper, we focus on the trajectory generation problem, which aims to generate qualified trajectory dataset that is indistinguishable from real trajectories, for fulfilling the needs of large-scale trajectory data by self-driving simulation and traffic analysis tasks in data sparse cities or regions. We propose two advanced solutions, namely TrajGAN and TrajVAE, which utilize LSTM to model the characteristics of trajectories first, and then take advantage of Generative Adversarial Network (GAN) and Variational AutoEncoder (VAE) frameworks respectively to generate trajectories. In order of compare the similarity of existing trajectories in our dataset and the generated trajectories, we utilize multiple trajectory similarity metrics. Through several experiments, we demonstrate that our method is more accurate and stable than the baseline.
科研通智能强力驱动
Strongly Powered by AbleSci AI