Histologic subtype classification of non-small cell lung cancer using PET/CT images

人工智能 特征选择 随机森林 医学 支持向量机 接收机工作特性 线性判别分析 模式识别(心理学) 交叉验证 分类器(UML) 计算机科学 肺癌 机器学习 病理
作者
Yong Han,Yuan Ma,Zhiyuan Wu,Feng Zhang,Deqiang Zheng,Xiangtong Liu,Lixin Tao,Zhigang Liang,Zhi Yang,Xia Li,Jian Huang,Xiuhua Guo
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:48 (2): 350-360 被引量:126
标识
DOI:10.1007/s00259-020-04771-5
摘要

To evaluate the capability of PET/CT images for differentiating the histologic subtypes of non-small cell lung cancer (NSCLC) and to identify the optimal model from radiomics-based machine learning/deep learning algorithms. In this study, 867 patients with adenocarcinoma (ADC) and 552 patients with squamous cell carcinoma (SCC) were retrospectively analysed. A stratified random sample of 283 patients (20%) was used as the testing set (173 ADC and 110 SCC); the remaining data were used as the training set. A total of 688 features were extracted from each outlined tumour region. Ten feature selection techniques, ten machine learning (ML) models and the VGG16 deep learning (DL) algorithm were evaluated to construct an optimal classification model for the differential diagnosis of ADC and SCC. Tenfold cross-validation and grid search technique were employed to evaluate and optimize the model hyperparameters on the training dataset. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, sensitivity and specificity was used to evaluate the performance of the models on the test dataset. Fifty top-ranked subset features were selected by each feature selection technique for classification. The linear discriminant analysis (LDA) (AUROC, 0.863; accuracy, 0.794) and support vector machine (SVM) (AUROC, 0.863; accuracy, 0.792) classifiers, both of which coupled with the l2,1NR feature selection method, achieved optimal performance. The random forest (RF) classifier (AUROC, 0.824; accuracy, 0.775) and l2,1NR feature selection method (AUROC, 0.815; accuracy, 0.764) showed excellent average performance among the classifiers and feature selection methods employed in our study, respectively. Furthermore, the VGG16 DL algorithm (AUROC, 0.903; accuracy, 0.841) outperformed all conventional machine learning methods in combination with radiomics. Employing radiomic machine learning/deep learning algorithms could help radiologists to differentiate the histologic subtypes of NSCLC via PET/CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
传奇3应助hututu采纳,获得30
3秒前
6秒前
jinjin发布了新的文献求助10
6秒前
123456发布了新的文献求助10
7秒前
7秒前
San万发布了新的文献求助10
7秒前
9秒前
11秒前
11秒前
stt1011完成签到,获得积分10
11秒前
上官若男应助豆沙包采纳,获得10
11秒前
Akim应助自由的风采纳,获得10
11秒前
张晓昊发布了新的文献求助10
12秒前
赛赛完成签到 ,获得积分10
13秒前
13秒前
15秒前
竹筏过海应助知性的冰棍采纳,获得30
17秒前
San万完成签到,获得积分10
17秒前
小次之山发布了新的文献求助10
18秒前
慕青应助jinjin采纳,获得30
20秒前
20秒前
123456完成签到,获得积分10
22秒前
陆浩学化学完成签到,获得积分10
24秒前
王大炮发布了新的文献求助10
25秒前
李昆朋完成签到,获得积分10
25秒前
25秒前
Starwalker应助活泼冬天采纳,获得20
26秒前
26秒前
和谐的阁完成签到,获得积分10
28秒前
香蕉觅云应助张晓昊采纳,获得10
29秒前
29秒前
30秒前
范丞丞发布了新的文献求助10
31秒前
Hello应助王大炮采纳,获得10
32秒前
路冰完成签到,获得积分10
32秒前
Young发布了新的文献求助10
32秒前
35秒前
三年三班三井寿完成签到,获得积分10
37秒前
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629