Histologic subtype classification of non-small cell lung cancer using PET/CT images

人工智能 特征选择 随机森林 医学 支持向量机 接收机工作特性 线性判别分析 模式识别(心理学) 交叉验证 分类器(UML) 计算机科学 肺癌 机器学习 病理
作者
Yong Han,Yuan Ma,Zhiyuan Wu,Feng Zhang,Deqiang Zheng,Xiangtong Liu,Lixin Tao,Zhigang Liang,Zhi Yang,Xia Li,Jian Huang,Xiuhua Guo
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:48 (2): 350-360 被引量:126
标识
DOI:10.1007/s00259-020-04771-5
摘要

To evaluate the capability of PET/CT images for differentiating the histologic subtypes of non-small cell lung cancer (NSCLC) and to identify the optimal model from radiomics-based machine learning/deep learning algorithms. In this study, 867 patients with adenocarcinoma (ADC) and 552 patients with squamous cell carcinoma (SCC) were retrospectively analysed. A stratified random sample of 283 patients (20%) was used as the testing set (173 ADC and 110 SCC); the remaining data were used as the training set. A total of 688 features were extracted from each outlined tumour region. Ten feature selection techniques, ten machine learning (ML) models and the VGG16 deep learning (DL) algorithm were evaluated to construct an optimal classification model for the differential diagnosis of ADC and SCC. Tenfold cross-validation and grid search technique were employed to evaluate and optimize the model hyperparameters on the training dataset. The area under the receiver operating characteristic curve (AUROC), accuracy, precision, sensitivity and specificity was used to evaluate the performance of the models on the test dataset. Fifty top-ranked subset features were selected by each feature selection technique for classification. The linear discriminant analysis (LDA) (AUROC, 0.863; accuracy, 0.794) and support vector machine (SVM) (AUROC, 0.863; accuracy, 0.792) classifiers, both of which coupled with the l2,1NR feature selection method, achieved optimal performance. The random forest (RF) classifier (AUROC, 0.824; accuracy, 0.775) and l2,1NR feature selection method (AUROC, 0.815; accuracy, 0.764) showed excellent average performance among the classifiers and feature selection methods employed in our study, respectively. Furthermore, the VGG16 DL algorithm (AUROC, 0.903; accuracy, 0.841) outperformed all conventional machine learning methods in combination with radiomics. Employing radiomic machine learning/deep learning algorithms could help radiologists to differentiate the histologic subtypes of NSCLC via PET/CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Grayball应助包容的剑采纳,获得10
1秒前
董小天天完成签到,获得积分10
1秒前
1秒前
华仔应助qym采纳,获得10
1秒前
琅琊为刃完成签到,获得积分10
2秒前
酷波er应助hhh采纳,获得10
2秒前
2秒前
小巧的香氛完成签到 ,获得积分10
3秒前
3秒前
3秒前
zxcv23发布了新的文献求助10
3秒前
没有名称发布了新的文献求助10
3秒前
4秒前
4秒前
zier完成签到 ,获得积分10
5秒前
阡陌完成签到,获得积分10
5秒前
华仔应助毕业就好采纳,获得10
5秒前
liyi发布了新的文献求助10
5秒前
难过小天鹅完成签到,获得积分10
6秒前
非常可爱发布了新的文献求助20
6秒前
eee发布了新的文献求助10
6秒前
幸福胡萝卜完成签到,获得积分10
6秒前
7秒前
科研通AI5应助琅琊为刃采纳,获得10
7秒前
7秒前
7秒前
7秒前
寒冷的奇异果完成签到,获得积分10
8秒前
hziyu发布了新的文献求助10
9秒前
9秒前
野性的南蕾完成签到,获得积分10
9秒前
毛毛哦啊发布了新的文献求助10
9秒前
zzzzzk发布了新的文献求助10
9秒前
9秒前
lalala发布了新的文献求助10
10秒前
三里墩头应助oldlee采纳,获得20
10秒前
10秒前
iNk应助西安小小朱采纳,获得10
10秒前
CodeCraft应助西安小小朱采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672