数字
计算机科学
预处理器
字错误率
任务(项目管理)
语音识别
人工智能
邮政服务
模式识别(心理学)
算术
数学
工程类
公共行政
政治学
系统工程
作者
Yann LeCun,Bernhard E. Boser,John S. Denker,D. Henderson,Richard Howard,Wayne E. Hubbard,Lawrence D. Jackel
摘要
We present an application of back-propagation networks to handwritten digit recognition. Minimal preprocessing of the data was required, but architecture of the network was highly constrained and specifically designed for the task. The input of the network consists of normalized images of isolated digits. The method has 1% error rate and about a 9% reject rate on zipcode digits provided by the U.S. Postal Service.
科研通智能强力驱动
Strongly Powered by AbleSci AI