Optimization of combined heat and power production with heat storage based on sliding time window method

热能储存 收入 生产(经济) 功率(物理) 计算机科学 数学优化 工程类 工艺工程 模拟 经济 微观经济学 数学 财务 物理 生物 量子力学 生态学
作者
Tingting Fang,Risto Lahdelma
出处
期刊:Applied Energy [Elsevier]
卷期号:162: 723-732 被引量:136
标识
DOI:10.1016/j.apenergy.2015.10.135
摘要

A combined heat and power (CHP) optimization model with heat storage is proposed to minimize the production cost and to maximize the revenue from power sales based on a sliding time window method. The model can be applied both for operating heat storage optimally and supporting investment planning for a new storage. Heat demand is forecasted based on a weather forecast. Each day the heat demand and power price forecasts are input to a generic CHP optimization model for a several-day time window to obtain a heat storage operation plan. Then only the first day of the plan is implemented with actual power price and heat demand using a single-day optimization model to compute the actual production amount, fuel costs and revenue from power sales. After that, the time window is slid one day forward, and the above-mentioned process is repeated. In the test runs, forecasts for power price and temperature are simulated by disturbing actual (historical) data by the Wiener process (random walk). To evaluate the benefit and validate the proposed method, the results are compared with the no-storage case and the theoretical optimum assuming perfect demand and price forecasts. The results show that the revenue from power sales can be significantly improved. The method is used to evaluate the benefit of different sized storages for the CHP system. Also the effect of the width of the time windows on the performance of the method is evaluated. The model was tested using real-life heat demand data for the city of Espoo in Finland, and NordPool spot market data for power price for a one year time horizon. The results indicate that considering the forecasting uncertainty, 5-day sliding time window method can obtain 90% of the theoretically possible cost savings that can be derived based on perfect forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QWE完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
4秒前
5秒前
zzh319发布了新的文献求助10
6秒前
6秒前
chromium22发布了新的文献求助10
8秒前
海海发布了新的文献求助10
8秒前
ruochenzu发布了新的文献求助30
8秒前
赘婿应助youjiwuji采纳,获得20
9秒前
Akim应助方羽采纳,获得10
9秒前
Aurora.H完成签到,获得积分10
10秒前
科研通AI2S应助MingM采纳,获得10
10秒前
十七应助郝56采纳,获得10
11秒前
12秒前
领导范儿应助a'mao'men采纳,获得10
12秒前
12秒前
科研通AI2S应助沐舒采纳,获得10
13秒前
科研通AI2S应助清平道人采纳,获得10
14秒前
快哒哒哒完成签到,获得积分10
16秒前
16秒前
Yy发布了新的文献求助10
17秒前
20秒前
方羽发布了新的文献求助10
22秒前
22秒前
Nathan完成签到 ,获得积分10
24秒前
25秒前
Gsamber完成签到,获得积分10
26秒前
28秒前
现代的竺发布了新的文献求助10
30秒前
31秒前
32秒前
zzh319完成签到,获得积分10
32秒前
研友_5Y9775发布了新的文献求助10
34秒前
Hello应助方羽采纳,获得10
38秒前
高贵书南发布了新的文献求助10
38秒前
火星上的鸵鸟完成签到 ,获得积分10
39秒前
南风应助大司马采纳,获得20
39秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396184
求助须知:如何正确求助?哪些是违规求助? 3006074
关于积分的说明 8819319
捐赠科研通 2693132
什么是DOI,文献DOI怎么找? 1475094
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675557