摘要
Since the first report on the long-term durable 9.7% solid-state perovskite solar cell employing methylammonium lead iodide (CH3NH3PbI3), mesoporous TiO2, and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) in 2012, following the seed technologies on perovskite-sensitized liquid junction solar cells in 2009 and 2011, a surge of interest has been focused on perovskite solar cells due to superb photovoltaic performance and extremely facile fabrication processes. The power conversion efficiency (PCE) of perovskite solar cells reached 21% in a very short period of time. Such an unprecedentedly high photovoltaic performance is due to the intrinsic optoelectronic property of organolead iodide perovskite material. Moreover, a high dielectric constant, sub-millimeter scale carrier diffusion length, an underlying ferroelectric property, and ion migration behavior can make organolead halide perovskites suitable for multifunctionality. Thus, besides solar cell applications, perovskite material has recently been applied to a variety fields of materials science such as photodetectors, light emitting diodes, lasing, X-ray imaging, resistive memory, and water splitting. Regardless of application areas, the growth of a well-defined perovskite layer with high crystallinity is essential for effective utilization of its excellent physicochemical properties. Therefore, an effective methodology for preparation of high quality perovskite layers is required. In this Account, an effective methodology for production of high quality perovskite layers is described, which is the Lewis acid-base adduct approach. In the solution process to form the perovskite layer, the key chemicals of CH3NH3I (or HC(NH2)2I) and PbI2 are used by dissolving them in polar aprotic solvents. Since polar aprotic solvents bear oxygen, sulfur, or nitrogen, they can act as a Lewis base. In addition, the main group compound PbI2 is known to be a Lewis acid. Thus, PbI2 has a chance to form an adduct by reacting with the Lewis base. Crystal growth and morphology of perovskite can be controlled by taking advantage of the weak chemical interaction in the adduct. We have successfully fabricated highly reproducible CH3NH3PbI3 perovskite solar cells with PCE as high as 19.7% via adducts of PbI2 with oxygen-donor N,N'-dimethyl sulfoxide. This adduct approach has been found to be generally adopted, where formamidinium lead iodide perovskite, HC(NH2)2PbI3 (FAPbI3), with large grain, high crystallinity, and long-lived carrier lifetime was successfully fabricated via an adduct of PbI2 with sulfur-donor thiourea as Lewis base. The adduct approach proposed in this Account is a very promising methodology to achieve high quality perovskite films with high photovoltaic performance. Furthermore, single crystal growth on the conductive substrate is expected to be possible if we kinetically control the elimination of Lewis base in the adduct.