清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Randomized methods for computing low-rank approximations of matrices

奇异值分解 随机算法 低秩近似 基质(化学分析) QR分解 计算机科学 数值线性代数 算法 矩阵分解 集合(抽象数据类型) 计算 秩(图论) 理论计算机科学 数学 线性系统 特征向量 数学分析 材料科学 物理 汉克尔矩阵 量子力学 组合数学 复合材料 程序设计语言
作者
Per‐Gunnar Martinsson,Nathan Halko
摘要

Randomized sampling techniques have recently proved capable of efficiently solving many standard problems in linear algebra, and enabling computations at scales far larger than what was previously possible. The new algorithms are designed from the bottom up to perform well in modern computing environments where the expense of communication is the primary constraint. In extreme cases, the algorithms can even be made to work in a streaming environment where the matrix is not stored at all, and each element can be seen only once. The dissertation describes a set of randomized techniques for rapidly constructing a low-rank approximation to a matrix. The algorithms are presented in a modular framework that first computes an approximation to the range of the matrix via randomized sampling. Secondly, the matrix is projected to the approximate range, and a factorization (SVD, QR, LU, etc.) of the resulting low-rank matrix is computed via variations of classical deterministic methods. Theoretical performance bounds are provided. Particular attention is given to very large scale computations where the matrix does not fit in RAM on a single workstation. Algorithms are developed for the case where the original matrix must be stored out-of-core but where the factors of the approximation fit in RAM. Numerical examples are provided that perform Principal Component Analysis of a data set that is so large that less than one hundredth of it can fit in the RAM of a standard laptop computer. Furthermore, the dissertation presents a parallelized randomized scheme for computing a reduced rank Singular Value Decomposition. By parallelizing and distributing both the randomized sampling stage and the processing of the factors in the approximate factorization, the method requires an amount of memory per node which is independent of both dimensions of the input matrix. Numerical experiments are performed on Hadoop clusters of computers in Amazon's Elastic Compute Cloud with up to 64 total cores. Finally, we directly compare the performance and accuracy of the randomized algorithm with the classical Lanczos method on extremely large, sparse matrices and substantiate the claim that randomized methods are superior in this environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助llllly采纳,获得10
24秒前
hiiiiiii完成签到 ,获得积分10
39秒前
58秒前
坚强的广山完成签到,获得积分0
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Eric800824完成签到 ,获得积分10
3分钟前
3分钟前
zsmj23完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
哈哈完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
7分钟前
肆肆完成签到,获得积分10
7分钟前
8分钟前
锋feng完成签到 ,获得积分10
8分钟前
你博哥完成签到 ,获得积分10
9分钟前
10分钟前
陶沛发布了新的文献求助10
11分钟前
大喵完成签到,获得积分10
12分钟前
爱静静完成签到,获得积分0
12分钟前
Jenny完成签到 ,获得积分10
13分钟前
书文混四方完成签到 ,获得积分10
14分钟前
14分钟前
隐形问萍完成签到,获得积分10
14分钟前
隐形问萍发布了新的文献求助10
15分钟前
FSYHantis完成签到,获得积分10
16分钟前
陈元元K完成签到,获得积分10
17分钟前
wangye完成签到 ,获得积分10
17分钟前
名侦探柯基完成签到 ,获得积分10
18分钟前
Jack80应助科研通管家采纳,获得50
18分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899719
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142