Randomized methods for computing low-rank approximations of matrices

奇异值分解 随机算法 低秩近似 基质(化学分析) QR分解 计算机科学 数值线性代数 算法 矩阵分解 集合(抽象数据类型) 计算 秩(图论) 理论计算机科学 数学 线性系统 特征向量 数学分析 材料科学 物理 汉克尔矩阵 量子力学 组合数学 复合材料 程序设计语言
作者
Per‐Gunnar Martinsson,Nathan Halko
摘要

Randomized sampling techniques have recently proved capable of efficiently solving many standard problems in linear algebra, and enabling computations at scales far larger than what was previously possible. The new algorithms are designed from the bottom up to perform well in modern computing environments where the expense of communication is the primary constraint. In extreme cases, the algorithms can even be made to work in a streaming environment where the matrix is not stored at all, and each element can be seen only once. The dissertation describes a set of randomized techniques for rapidly constructing a low-rank approximation to a matrix. The algorithms are presented in a modular framework that first computes an approximation to the range of the matrix via randomized sampling. Secondly, the matrix is projected to the approximate range, and a factorization (SVD, QR, LU, etc.) of the resulting low-rank matrix is computed via variations of classical deterministic methods. Theoretical performance bounds are provided. Particular attention is given to very large scale computations where the matrix does not fit in RAM on a single workstation. Algorithms are developed for the case where the original matrix must be stored out-of-core but where the factors of the approximation fit in RAM. Numerical examples are provided that perform Principal Component Analysis of a data set that is so large that less than one hundredth of it can fit in the RAM of a standard laptop computer. Furthermore, the dissertation presents a parallelized randomized scheme for computing a reduced rank Singular Value Decomposition. By parallelizing and distributing both the randomized sampling stage and the processing of the factors in the approximate factorization, the method requires an amount of memory per node which is independent of both dimensions of the input matrix. Numerical experiments are performed on Hadoop clusters of computers in Amazon's Elastic Compute Cloud with up to 64 total cores. Finally, we directly compare the performance and accuracy of the randomized algorithm with the classical Lanczos method on extremely large, sparse matrices and substantiate the claim that randomized methods are superior in this environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆鹅喵喵完成签到,获得积分10
刚刚
1秒前
yin完成签到,获得积分20
1秒前
ckb0901完成签到,获得积分10
1秒前
1秒前
1秒前
123lx完成签到,获得积分10
1秒前
失眠呆呆鱼完成签到 ,获得积分10
1秒前
Raine完成签到,获得积分10
2秒前
Rainbow发布了新的文献求助10
2秒前
帅气且低调完成签到,获得积分10
2秒前
Dragon发布了新的文献求助10
3秒前
4秒前
Cinderella完成签到 ,获得积分10
4秒前
shengdong发布了新的文献求助10
5秒前
lls完成签到,获得积分10
5秒前
6秒前
Ava应助封小封采纳,获得10
6秒前
寒冷的凝旋完成签到,获得积分10
6秒前
6秒前
叶子宁完成签到,获得积分10
6秒前
6秒前
Eason完成签到,获得积分10
7秒前
Profeto应助乐枳采纳,获得10
7秒前
7秒前
大军门诊发布了新的文献求助20
7秒前
7秒前
5552222完成签到,获得积分10
7秒前
yanglina062完成签到,获得积分10
8秒前
亦竹完成签到,获得积分10
8秒前
Hao339发布了新的文献求助10
9秒前
9秒前
yiersan发布了新的文献求助10
9秒前
littlefatty完成签到 ,获得积分10
9秒前
张英俊发布了新的文献求助10
10秒前
邓少龙发布了新的文献求助10
10秒前
ahua15s完成签到,获得积分20
10秒前
11秒前
Ava应助小鹿斑斑比采纳,获得10
11秒前
misu完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301