Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM

计算流体力学 CFD-DEM公司 机械 水分 粒子(生态学) 离散元法 停留时间(流体动力学) 磁层粒子运动 多相流 含水量 粒径 环境科学 材料科学 化学 岩土工程 工程类 物理 地质学 复合材料 物理化学 磁场 海洋学 量子力学
作者
Patiwat Khomwachirakul,Sakamon Devahastin,Thanit Swasdisevi,Sakamon Devahastin
出处
期刊:Drying Technology [Informa]
卷期号:34 (4): 403-419 被引量:42
标识
DOI:10.1080/07373937.2015.1081930
摘要

Impinging stream dryer (ISD) is an alternative for drying high-moisture particulate materials. Due to the complex multiphase transport phenomena that take place within an ISD, use of a reliable computational model instead of a tedious experimental route to aid the design of the dryer is desirable. In the present study, computational fluid dynamics were used in combination with the discrete element method (CFD-DEM) to predict, for the first time, the multiphase transport phenomena within a coaxial ISD; results from a model that does not consider particle-particle interactions (CFD) were also obtained and compared with those from the CFD-DEM model. In all cases, high-moisture particles having negligible internal transport resistance were assumed. Both models were used to simulate the gas-particle motion behavior, particle mean moisture content, particle mean residence time, and particle residence time distribution. The simulated results from both models were compared with the experimental data whenever possible. The results showed that the CFD-DEM model could be utilized to predict the particle motion behavior and led to more physically realistic results than the CFD model. The CFD-DEM model also gave predictions that were in better agreement with the experimental mean particle residence time and moisture content data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助吃饭用大碗采纳,获得10
1秒前
1秒前
2秒前
3秒前
阿斯蒂和琴酒完成签到 ,获得积分10
3秒前
珂珂发布了新的文献求助10
5秒前
5秒前
迟大猫应助我是站长才怪采纳,获得30
5秒前
6秒前
BaekHyun发布了新的文献求助10
6秒前
背后翠梅发布了新的文献求助30
6秒前
CCR发布了新的文献求助10
6秒前
su发布了新的文献求助10
8秒前
善学以致用应助钰c采纳,获得10
8秒前
Fundamental完成签到,获得积分20
9秒前
通~发布了新的文献求助10
9秒前
Akim应助阿屁屁猪采纳,获得10
9秒前
10秒前
细雨听风发布了新的文献求助10
10秒前
10秒前
英俊的小松鼠完成签到,获得积分10
10秒前
11秒前
13秒前
cc完成签到,获得积分20
13秒前
14秒前
14秒前
背后翠梅完成签到,获得积分10
14秒前
14秒前
涛涛发布了新的文献求助10
14秒前
lan完成签到,获得积分10
14秒前
皮皮完成签到 ,获得积分10
15秒前
ChiDaiOLD完成签到,获得积分10
15秒前
15秒前
情怀应助顺顺采纳,获得10
15秒前
Fundamental发布了新的文献求助10
17秒前
咩咩发布了新的文献求助10
17秒前
kingmin应助金鸡奖采纳,获得10
17秒前
喜悦蚂蚁完成签到,获得积分10
18秒前
赘婿应助拼搏向前采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808