Cross-mobile ELM based Activity Recognition

支持向量机 分类器(UML) 模式识别(心理学) 移动设备
作者
Zhongtang Zhao,Yiqiang Chen,Junfa Liu,Mingjie Liu
出处
期刊:International Journal of Engineering and Industries 卷期号:1 (1): 30-40 被引量:12
标识
DOI:10.4156/ijei.vol1.issue1.3
摘要

Activity recognition using mobile phones has great potential in many applications including mobile healthcare. In order to let a person easily know whether he is in strict compliance with the doctor's exercise prescription and adjust his exercise amount accordingly, we can use a mobile phone based activity reporting system to accurately recognize a range of daily activities and report the duration of each activity. A triaxial accelerometer built-in the mobile phone is used for the classification of several activities, such as staying still, walking, running, and going upstairs and downstairs. To build an activity recognition model, we usually employ one or some specific persons and a specific mobile phone to collect the training samples. However, the world doesn't have the same two mobile phones. The model learnt on one mobile phone may perform poor on another one due to the different offset o, sensitivity s and sampling frequency f values. To solve the cross-mobile problem, we propose an algorithm known as TransELMAR(Transfer learning and Extreme Learning Machine based Activity Recognition) that integrates the transfer learning technique and extreme learning machine algorithm for activity recognition model adaptation. Tested on a real-world data set, the results show that our algorithm outperforms several traditional baseline algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪崩完成签到,获得积分10
刚刚
时聿发布了新的文献求助10
刚刚
Lucas应助在线人数九九加采纳,获得10
2秒前
雪崩发布了新的文献求助10
3秒前
搜集达人应助stayloy采纳,获得10
3秒前
lyy驳回了不配.应助
4秒前
外向的铅笔完成签到 ,获得积分10
5秒前
MZ完成签到,获得积分0
5秒前
整齐大楚发布了新的文献求助10
6秒前
Xiao完成签到,获得积分10
6秒前
吴晨曦发布了新的文献求助10
7秒前
10秒前
11秒前
子平完成签到 ,获得积分10
11秒前
weiwei发布了新的文献求助10
15秒前
15秒前
叶成帷完成签到,获得积分10
16秒前
隐形曼青应助吴晨曦采纳,获得10
16秒前
戚俶发布了新的文献求助10
17秒前
17秒前
叶成帷发布了新的文献求助10
21秒前
casperzwj完成签到,获得积分10
22秒前
胡茶茶完成签到 ,获得积分10
26秒前
27秒前
WANG发布了新的文献求助10
29秒前
翁雁丝完成签到 ,获得积分10
30秒前
小城故事和冰雨完成签到,获得积分10
31秒前
情怀应助Dou采纳,获得10
31秒前
32秒前
33秒前
Lalalakal完成签到,获得积分20
36秒前
36秒前
LILICOME发布了新的文献求助10
39秒前
44秒前
Orange应助xiaoguai采纳,获得10
46秒前
47秒前
Owen应助科研通管家采纳,获得10
49秒前
Pia唧完成签到 ,获得积分10
49秒前
50秒前
酷波er应助JallenMiao采纳,获得10
51秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379837
求助须知:如何正确求助?哪些是违规求助? 2995266
关于积分的说明 8762346
捐赠科研通 2680149
什么是DOI,文献DOI怎么找? 1467845
科研通“疑难数据库(出版商)”最低求助积分说明 678787
邀请新用户注册赠送积分活动 670646