Conductivity Degradation of Polyvinylidene Fluoride Composite Binder during Cycling: Measurements and Simulations for Lithium-Ion Batteries

聚偏氟乙烯 材料科学 电导率 复合材料 锂钴氧化物 炭黑 阴极 锂(药物) 电解质 阳极 复合数 电池(电) 锂离子电池 电极 聚合物 化学 天然橡胶 量子力学 功率(物理) 物理化学 内分泌学 医学 物理
作者
Anne Grillet,Thomas Humplik,Emily Kate Stirrup,Scott Alan Roberts,David Alan Barringer,Chelsea Marie Snyder,Madison R. Janvrin,Christopher A. Apblett
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:163 (9): A1859-A1871 被引量:65
标识
DOI:10.1149/2.0341609jes
摘要

The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling of lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Finally, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wqq应助drdouxia采纳,获得10
刚刚
无敌鱼发布了新的文献求助10
1秒前
材料小刘鸭完成签到,获得积分10
1秒前
研友_pLwmvZ发布了新的文献求助10
1秒前
褚晣完成签到,获得积分10
1秒前
roclie发布了新的文献求助10
1秒前
1秒前
甜甜弘文完成签到 ,获得积分20
1秒前
木亢完成签到,获得积分10
6秒前
6秒前
笑点低完成签到,获得积分10
6秒前
甜甜醉波发布了新的文献求助10
6秒前
星辰大海应助jennyyu采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得30
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
压缩应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
charles发布了新的文献求助10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
FashionBoy应助云_123采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
陈军应助科研通管家采纳,获得20
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
至乐无乐发布了新的文献求助30
9秒前
好心情关注了科研通微信公众号
9秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847