Conductivity Degradation of Polyvinylidene Fluoride Composite Binder during Cycling: Measurements and Simulations for Lithium-Ion Batteries

聚偏氟乙烯 材料科学 电导率 复合材料 锂钴氧化物 炭黑 阴极 锂(药物) 电解质 阳极 复合数 电池(电) 锂离子电池 电极 聚合物 化学 天然橡胶 量子力学 功率(物理) 物理化学 内分泌学 医学 物理
作者
Anne Grillet,Thomas Humplik,Emily Kate Stirrup,Scott Alan Roberts,David Alan Barringer,Chelsea Marie Snyder,Madison R. Janvrin,Christopher A. Apblett
出处
期刊:Journal of The Electrochemical Society [Institute of Physics]
卷期号:163 (9): A1859-A1871 被引量:65
标识
DOI:10.1149/2.0341609jes
摘要

The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling of lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Finally, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwl666发布了新的文献求助10
刚刚
莫茹发布了新的文献求助10
刚刚
Jie发布了新的文献求助10
1秒前
zlx完成签到 ,获得积分10
2秒前
DQ发布了新的文献求助10
2秒前
2秒前
陶军辉完成签到 ,获得积分10
3秒前
Jasper应助莫茹采纳,获得10
5秒前
8秒前
yyy_完成签到,获得积分20
8秒前
田様应助hhhhhh采纳,获得10
9秒前
10秒前
13秒前
13秒前
yiyimx发布了新的文献求助10
14秒前
英姑应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
1+1应助科研通管家采纳,获得10
16秒前
行走家应助科研通管家采纳,获得10
16秒前
喜悦成威应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
jwx应助科研通管家采纳,获得10
16秒前
1+1应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
17秒前
yz应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
1+1应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
隐形曼青应助科研通管家采纳,获得20
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
HEIKU应助科研通管家采纳,获得10
17秒前
研友_Z6Q45n应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093