DNA微阵列
基因
生物
微阵列
胎儿
氨基酸
微阵列分析技术
基因表达
分子生物学
肺
细胞生物学
遗传学
医学
内科学
怀孕
作者
Yulian Wang,Benjamin S. Maciejewski,G. Weissmann,Ophira Silbert,Hillary Han,Juan Sanchez-Esteban
标识
DOI:10.1203/01.pdr.0000227479.73003.b5
摘要
Mechanical forces are essential for normal fetal lung development. However, the cellular and molecular mechanisms regulating this process are still poorly defined. In this study, we used oligonucleotide microarrays to investigate gene expression in cultured embryonic d 19 rat fetal lung type II epithelial cells exposed to a level of mechanical strain similar to the developing lung. Significance Analysis of Microarrays (SAM) identified 92 genes differentially expressed by strain. Interestingly, several members of the solute carrier family of amino acid transporter (Slc7a1, Slc7a3, Slc6a9, and tumor-associated protein 1) genes involved in amino acid synthesis (Phgdh, Psat1, Psph, Cars, and Asns), as well as the amiloride-sensitive epithelial sodium channel gene (Scnn1a) were up-regulated by the application of force. These results were confirmed by quantitative real-time PCR (qRT-PCR). Thus, this study identifies genes induced by strain that may be important for amino acid signaling pathways and protein synthesis in fetal type II cells. In addition, these data suggest that mechanical forces may contribute to facilitate lung fluid reabsorption in preparation for birth. Taken together, the present investigation provides further insights into how mechanical forces may modulate fetal lung development.
科研通智能强力驱动
Strongly Powered by AbleSci AI