Using data mining to model and interpret soil diffuse reflectance spectra

阿卡克信息准则 均方误差 特征选择 偏最小二乘回归 支持向量机 随机森林 数学 多元自适应回归样条 可解释性 人工智能 统计 模式识别(心理学) 人工神经网络 特征(语言学) 小波 回归分析 计算机科学 贝叶斯多元线性回归 语言学 哲学
作者
Raphael A. Viscarra Rossel,Thorsten Behrens
出处
期刊:Geoderma [Elsevier]
卷期号:158 (1-2): 46-54 被引量:875
标识
DOI:10.1016/j.geoderma.2009.12.025
摘要

The aims of this paper are: to compare different data mining algorithms for modelling soil visible–near infrared (vis–NIR: 350–2500 nm) diffuse reflectance spectra and to assess the interpretability of the results. We compared multiple linear regression (MLR), partial least squares regression (PLSR), multivariate adaptive regression splines (MARS), support vector machines (SVM), random forests (RF), boosted trees (BT) and artificial neural networks (ANN) to estimate soil organic carbon (SOC), clay content (CC) and pH measured in water (pH). The comparisons were also performed using a selected set of wavelet coefficients from a discrete wavelet transform (DWT). Feature selection techniques to reduce model complexity and to interpret and evaluate the models were tested. The dataset consists of 1104 samples from Australia. Comparisons were made in terms of the root mean square error (RMSE), the corresponding R2 and the Akaike Information Criterion (AIC). Ten-fold-leave-group out cross validation was used to optimise and validate the models. Predictions of the three soil properties by SVM using all vis–NIR wavelengths produced the smallest RMSE values, followed by MARS and PLSR. RF and especially BT were out-performed by all other approaches. For all techniques, implementing them on a reduced number of wavelet coefficients, between 72 and 137 coefficients, produced better results. Feature selection (FS) using the variable importance for projection (FSVIP) returned 29–31 selected features, while FSMARS returned between 11 and 14 features. DWT–ANN produced the smallest RMSE of all techniques tested followed by FSVIP–ANN and FSMARS–ANN. However, both the FSVIP–ANN and FSMARS–ANN models used a smaller number of features for the predictions than DWT–ANN. This is reflected in their AIC, which suggests that, when both the accuracy and parsimony of the model are taken into consideration, the best SOC model was the FSMARS–ANN, and the best CC and pH models were those from FSVIP–ANN. Analysis of the selected bands shows that: (i) SOC is related to wavelengths indicating C―O, C═O, and N―H compounds, (ii) CC is related to wavelengths indicating minerals, and (iii) pH is related to wavelengths indicating both minerals and organic material. Thus, the results are sensible and can be used for comparison to other soils. A systematic comparison like the one presented here is important as the nature of the target function has a strong influence on the performance of the different algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助研友_LJGoXn采纳,获得10
刚刚
酷波er应助yuilcl采纳,获得10
刚刚
刚刚
2339822272发布了新的文献求助10
刚刚
1秒前
晚风cc留下了新的社区评论
1秒前
开朗青槐发布了新的文献求助20
1秒前
2秒前
berg发布了新的文献求助10
2秒前
任吉喆完成签到 ,获得积分10
2秒前
Akim应助stella采纳,获得10
2秒前
cya发布了新的文献求助10
4秒前
Mira完成签到,获得积分10
4秒前
4秒前
搜集达人应助裴秀智采纳,获得30
5秒前
Steven发布了新的文献求助10
5秒前
6秒前
明明明发布了新的文献求助10
6秒前
JamesPei应助ccyy采纳,获得10
6秒前
棋士发布了新的文献求助10
6秒前
美好易完成签到,获得积分10
7秒前
科研通AI2S应助枫溪采纳,获得10
7秒前
完美世界应助闫永洁采纳,获得10
7秒前
刁弘睿完成签到,获得积分10
8秒前
hq发布了新的文献求助10
8秒前
深情安青应助猜不猜不采纳,获得10
8秒前
田园镇完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助30
8秒前
宋真玉完成签到,获得积分10
9秒前
完美世界应助cg666采纳,获得10
10秒前
猫猫无敌发布了新的文献求助10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
spc68应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425