亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using data mining to model and interpret soil diffuse reflectance spectra

阿卡克信息准则 均方误差 特征选择 偏最小二乘回归 支持向量机 随机森林 数学 多元自适应回归样条 可解释性 人工智能 统计 模式识别(心理学) 人工神经网络 特征(语言学) 小波 回归分析 计算机科学 贝叶斯多元线性回归 语言学 哲学
作者
Raphael A. Viscarra Rossel,Thorsten Behrens
出处
期刊:Geoderma [Elsevier]
卷期号:158 (1-2): 46-54 被引量:875
标识
DOI:10.1016/j.geoderma.2009.12.025
摘要

The aims of this paper are: to compare different data mining algorithms for modelling soil visible–near infrared (vis–NIR: 350–2500 nm) diffuse reflectance spectra and to assess the interpretability of the results. We compared multiple linear regression (MLR), partial least squares regression (PLSR), multivariate adaptive regression splines (MARS), support vector machines (SVM), random forests (RF), boosted trees (BT) and artificial neural networks (ANN) to estimate soil organic carbon (SOC), clay content (CC) and pH measured in water (pH). The comparisons were also performed using a selected set of wavelet coefficients from a discrete wavelet transform (DWT). Feature selection techniques to reduce model complexity and to interpret and evaluate the models were tested. The dataset consists of 1104 samples from Australia. Comparisons were made in terms of the root mean square error (RMSE), the corresponding R2 and the Akaike Information Criterion (AIC). Ten-fold-leave-group out cross validation was used to optimise and validate the models. Predictions of the three soil properties by SVM using all vis–NIR wavelengths produced the smallest RMSE values, followed by MARS and PLSR. RF and especially BT were out-performed by all other approaches. For all techniques, implementing them on a reduced number of wavelet coefficients, between 72 and 137 coefficients, produced better results. Feature selection (FS) using the variable importance for projection (FSVIP) returned 29–31 selected features, while FSMARS returned between 11 and 14 features. DWT–ANN produced the smallest RMSE of all techniques tested followed by FSVIP–ANN and FSMARS–ANN. However, both the FSVIP–ANN and FSMARS–ANN models used a smaller number of features for the predictions than DWT–ANN. This is reflected in their AIC, which suggests that, when both the accuracy and parsimony of the model are taken into consideration, the best SOC model was the FSMARS–ANN, and the best CC and pH models were those from FSVIP–ANN. Analysis of the selected bands shows that: (i) SOC is related to wavelengths indicating C―O, C═O, and N―H compounds, (ii) CC is related to wavelengths indicating minerals, and (iii) pH is related to wavelengths indicating both minerals and organic material. Thus, the results are sensible and can be used for comparison to other soils. A systematic comparison like the one presented here is important as the nature of the target function has a strong influence on the performance of the different algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑傲完成签到,获得积分10
16秒前
开心每一天完成签到 ,获得积分10
47秒前
房天川完成签到 ,获得积分10
48秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
杨泽宇发布了新的文献求助10
1分钟前
日常K人完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SnowElf完成签到,获得积分10
2分钟前
2分钟前
hongye发布了新的文献求助30
2分钟前
SnowElf发布了新的文献求助10
2分钟前
2分钟前
2分钟前
orangel发布了新的文献求助10
2分钟前
hongye完成签到 ,获得积分10
2分钟前
小粒橙完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
HaoZhang发布了新的文献求助10
3分钟前
HaoZhang完成签到,获得积分20
3分钟前
尼古拉斯铁柱完成签到 ,获得积分10
3分钟前
矜持完成签到 ,获得积分10
3分钟前
Mic应助笑点低的斑马采纳,获得10
3分钟前
lixuebin发布了新的文献求助10
4分钟前
4分钟前
小白发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
嗨嗨嗨完成签到 ,获得积分10
6分钟前
胖小羊完成签到 ,获得积分10
6分钟前
7分钟前
桥西小河完成签到 ,获得积分10
8分钟前
脑洞疼应助怕孤独的怀莲采纳,获得30
8分钟前
SUNny发布了新的文献求助10
8分钟前
有米爱吃又桂卷完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505