Using data mining to model and interpret soil diffuse reflectance spectra

阿卡克信息准则 均方误差 特征选择 偏最小二乘回归 支持向量机 随机森林 数学 多元自适应回归样条 可解释性 人工智能 统计 模式识别(心理学) 人工神经网络 特征(语言学) 小波 回归分析 计算机科学 贝叶斯多元线性回归 语言学 哲学
作者
Raphael A. Viscarra Rossel,Thorsten Behrens
出处
期刊:Geoderma [Elsevier]
卷期号:158 (1-2): 46-54 被引量:875
标识
DOI:10.1016/j.geoderma.2009.12.025
摘要

The aims of this paper are: to compare different data mining algorithms for modelling soil visible–near infrared (vis–NIR: 350–2500 nm) diffuse reflectance spectra and to assess the interpretability of the results. We compared multiple linear regression (MLR), partial least squares regression (PLSR), multivariate adaptive regression splines (MARS), support vector machines (SVM), random forests (RF), boosted trees (BT) and artificial neural networks (ANN) to estimate soil organic carbon (SOC), clay content (CC) and pH measured in water (pH). The comparisons were also performed using a selected set of wavelet coefficients from a discrete wavelet transform (DWT). Feature selection techniques to reduce model complexity and to interpret and evaluate the models were tested. The dataset consists of 1104 samples from Australia. Comparisons were made in terms of the root mean square error (RMSE), the corresponding R2 and the Akaike Information Criterion (AIC). Ten-fold-leave-group out cross validation was used to optimise and validate the models. Predictions of the three soil properties by SVM using all vis–NIR wavelengths produced the smallest RMSE values, followed by MARS and PLSR. RF and especially BT were out-performed by all other approaches. For all techniques, implementing them on a reduced number of wavelet coefficients, between 72 and 137 coefficients, produced better results. Feature selection (FS) using the variable importance for projection (FSVIP) returned 29–31 selected features, while FSMARS returned between 11 and 14 features. DWT–ANN produced the smallest RMSE of all techniques tested followed by FSVIP–ANN and FSMARS–ANN. However, both the FSVIP–ANN and FSMARS–ANN models used a smaller number of features for the predictions than DWT–ANN. This is reflected in their AIC, which suggests that, when both the accuracy and parsimony of the model are taken into consideration, the best SOC model was the FSMARS–ANN, and the best CC and pH models were those from FSVIP–ANN. Analysis of the selected bands shows that: (i) SOC is related to wavelengths indicating C―O, C═O, and N―H compounds, (ii) CC is related to wavelengths indicating minerals, and (iii) pH is related to wavelengths indicating both minerals and organic material. Thus, the results are sensible and can be used for comparison to other soils. A systematic comparison like the one presented here is important as the nature of the target function has a strong influence on the performance of the different algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助snow采纳,获得30
刚刚
刚刚
zyc发布了新的文献求助10
1秒前
研友_Ze0vBn发布了新的文献求助10
1秒前
1秒前
rundstedt完成签到 ,获得积分10
3秒前
调皮黑猫完成签到,获得积分10
3秒前
韩soso发布了新的文献求助10
3秒前
顾矜应助zyc采纳,获得10
5秒前
abcdefg发布了新的文献求助30
5秒前
LI完成签到,获得积分10
6秒前
9秒前
9秒前
程伟为完成签到 ,获得积分10
10秒前
12秒前
13秒前
13秒前
充电宝应助李jiwei200805采纳,获得10
17秒前
尊敬的手套完成签到,获得积分10
17秒前
爆米花应助houbinghua采纳,获得10
17秒前
18秒前
18秒前
18秒前
19秒前
19秒前
Molly完成签到 ,获得积分10
20秒前
21秒前
丰知然应助喜悦的芷采纳,获得10
23秒前
天真大神完成签到,获得积分10
23秒前
ccc发布了新的文献求助10
23秒前
24秒前
丰知然应助陈艳林采纳,获得10
24秒前
有米饭没完成签到 ,获得积分10
24秒前
来了来了完成签到 ,获得积分10
27秒前
海城好人完成签到,获得积分10
29秒前
30秒前
32秒前
喜悦的芷完成签到,获得积分10
33秒前
hkh完成签到,获得积分10
35秒前
空白完成签到 ,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312259
求助须知:如何正确求助?哪些是违规求助? 2944898
关于积分的说明 8521939
捐赠科研通 2620639
什么是DOI,文献DOI怎么找? 1432965
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650134