Using data mining to model and interpret soil diffuse reflectance spectra

阿卡克信息准则 均方误差 特征选择 偏最小二乘回归 支持向量机 随机森林 数学 多元自适应回归样条 可解释性 人工智能 统计 模式识别(心理学) 人工神经网络 特征(语言学) 小波 回归分析 计算机科学 贝叶斯多元线性回归 语言学 哲学
作者
Raphael A. Viscarra Rossel,Thorsten Behrens
出处
期刊:Geoderma [Elsevier]
卷期号:158 (1-2): 46-54 被引量:875
标识
DOI:10.1016/j.geoderma.2009.12.025
摘要

The aims of this paper are: to compare different data mining algorithms for modelling soil visible–near infrared (vis–NIR: 350–2500 nm) diffuse reflectance spectra and to assess the interpretability of the results. We compared multiple linear regression (MLR), partial least squares regression (PLSR), multivariate adaptive regression splines (MARS), support vector machines (SVM), random forests (RF), boosted trees (BT) and artificial neural networks (ANN) to estimate soil organic carbon (SOC), clay content (CC) and pH measured in water (pH). The comparisons were also performed using a selected set of wavelet coefficients from a discrete wavelet transform (DWT). Feature selection techniques to reduce model complexity and to interpret and evaluate the models were tested. The dataset consists of 1104 samples from Australia. Comparisons were made in terms of the root mean square error (RMSE), the corresponding R2 and the Akaike Information Criterion (AIC). Ten-fold-leave-group out cross validation was used to optimise and validate the models. Predictions of the three soil properties by SVM using all vis–NIR wavelengths produced the smallest RMSE values, followed by MARS and PLSR. RF and especially BT were out-performed by all other approaches. For all techniques, implementing them on a reduced number of wavelet coefficients, between 72 and 137 coefficients, produced better results. Feature selection (FS) using the variable importance for projection (FSVIP) returned 29–31 selected features, while FSMARS returned between 11 and 14 features. DWT–ANN produced the smallest RMSE of all techniques tested followed by FSVIP–ANN and FSMARS–ANN. However, both the FSVIP–ANN and FSMARS–ANN models used a smaller number of features for the predictions than DWT–ANN. This is reflected in their AIC, which suggests that, when both the accuracy and parsimony of the model are taken into consideration, the best SOC model was the FSMARS–ANN, and the best CC and pH models were those from FSVIP–ANN. Analysis of the selected bands shows that: (i) SOC is related to wavelengths indicating C―O, C═O, and N―H compounds, (ii) CC is related to wavelengths indicating minerals, and (iii) pH is related to wavelengths indicating both minerals and organic material. Thus, the results are sensible and can be used for comparison to other soils. A systematic comparison like the one presented here is important as the nature of the target function has a strong influence on the performance of the different algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助景逸采纳,获得20
刚刚
烟花应助威武涵蕾采纳,获得10
4秒前
4秒前
111111111发布了新的文献求助10
5秒前
Akim应助leidianwu9采纳,获得40
5秒前
木沐完成签到,获得积分10
7秒前
8秒前
yingxiang完成签到,获得积分10
9秒前
酷酷的冰淇淋完成签到 ,获得积分10
9秒前
10秒前
乙醇发布了新的文献求助10
10秒前
嗒嗒嗒薇完成签到 ,获得积分10
11秒前
完美世界应助llyuyutt采纳,获得10
11秒前
CodeCraft应助赵佩奇采纳,获得10
12秒前
图图发布了新的文献求助10
12秒前
Lucas应助dudu采纳,获得10
12秒前
12秒前
13秒前
13秒前
脑洞疼应助痴情的醉冬采纳,获得10
13秒前
赘婿应助tutu采纳,获得10
13秒前
14秒前
任性的树叶完成签到 ,获得积分10
14秒前
凯撒发布了新的文献求助10
14秒前
yqsf789发布了新的文献求助10
15秒前
18秒前
111发布了新的文献求助10
18秒前
19秒前
松林发布了新的文献求助10
20秒前
李狗蛋完成签到 ,获得积分10
21秒前
坚强百招关注了科研通微信公众号
21秒前
Jing完成签到,获得积分10
22秒前
深情安青应助scanker1981采纳,获得30
23秒前
无花果应助yqsf789采纳,获得10
24秒前
英俊的铭应助均儒采纳,获得10
25秒前
25秒前
陈宝妮完成签到,获得积分10
25秒前
6菲完成签到,获得积分10
26秒前
ling完成签到,获得积分10
26秒前
王耀武完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307071
求助须知:如何正确求助?哪些是违规求助? 4452821
关于积分的说明 13855266
捐赠科研通 4340389
什么是DOI,文献DOI怎么找? 2383146
邀请新用户注册赠送积分活动 1378006
关于科研通互助平台的介绍 1345825