Using data mining to model and interpret soil diffuse reflectance spectra

阿卡克信息准则 均方误差 特征选择 偏最小二乘回归 支持向量机 随机森林 数学 多元自适应回归样条 可解释性 人工智能 统计 模式识别(心理学) 人工神经网络 特征(语言学) 小波 回归分析 计算机科学 贝叶斯多元线性回归 语言学 哲学
作者
Raphael A. Viscarra Rossel,Thorsten Behrens
出处
期刊:Geoderma [Elsevier]
卷期号:158 (1-2): 46-54 被引量:875
标识
DOI:10.1016/j.geoderma.2009.12.025
摘要

The aims of this paper are: to compare different data mining algorithms for modelling soil visible–near infrared (vis–NIR: 350–2500 nm) diffuse reflectance spectra and to assess the interpretability of the results. We compared multiple linear regression (MLR), partial least squares regression (PLSR), multivariate adaptive regression splines (MARS), support vector machines (SVM), random forests (RF), boosted trees (BT) and artificial neural networks (ANN) to estimate soil organic carbon (SOC), clay content (CC) and pH measured in water (pH). The comparisons were also performed using a selected set of wavelet coefficients from a discrete wavelet transform (DWT). Feature selection techniques to reduce model complexity and to interpret and evaluate the models were tested. The dataset consists of 1104 samples from Australia. Comparisons were made in terms of the root mean square error (RMSE), the corresponding R2 and the Akaike Information Criterion (AIC). Ten-fold-leave-group out cross validation was used to optimise and validate the models. Predictions of the three soil properties by SVM using all vis–NIR wavelengths produced the smallest RMSE values, followed by MARS and PLSR. RF and especially BT were out-performed by all other approaches. For all techniques, implementing them on a reduced number of wavelet coefficients, between 72 and 137 coefficients, produced better results. Feature selection (FS) using the variable importance for projection (FSVIP) returned 29–31 selected features, while FSMARS returned between 11 and 14 features. DWT–ANN produced the smallest RMSE of all techniques tested followed by FSVIP–ANN and FSMARS–ANN. However, both the FSVIP–ANN and FSMARS–ANN models used a smaller number of features for the predictions than DWT–ANN. This is reflected in their AIC, which suggests that, when both the accuracy and parsimony of the model are taken into consideration, the best SOC model was the FSMARS–ANN, and the best CC and pH models were those from FSVIP–ANN. Analysis of the selected bands shows that: (i) SOC is related to wavelengths indicating C―O, C═O, and N―H compounds, (ii) CC is related to wavelengths indicating minerals, and (iii) pH is related to wavelengths indicating both minerals and organic material. Thus, the results are sensible and can be used for comparison to other soils. A systematic comparison like the one presented here is important as the nature of the target function has a strong influence on the performance of the different algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yongziwu完成签到,获得积分10
1秒前
yushanriqing发布了新的文献求助10
1秒前
Laurance完成签到,获得积分10
2秒前
默幻弦完成签到,获得积分10
2秒前
hkh完成签到,获得积分10
3秒前
爱学习的小霸完成签到,获得积分10
3秒前
zyx发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
风中小鸽子完成签到,获得积分10
4秒前
炙热灵枫完成签到,获得积分10
5秒前
黑胡椒完成签到 ,获得积分10
6秒前
yangyangll完成签到,获得积分10
7秒前
7秒前
Laurance发布了新的文献求助10
7秒前
JOY完成签到,获得积分10
7秒前
7秒前
科研通AI6.1应助好晒采纳,获得10
8秒前
9秒前
10秒前
bkagyin应助韩薇采纳,获得10
10秒前
pu完成签到 ,获得积分10
10秒前
rora完成签到 ,获得积分10
11秒前
12秒前
郑佳旺完成签到,获得积分10
12秒前
内向映天发布了新的文献求助10
13秒前
烟雾镜发布了新的文献求助10
13秒前
殷勤的紫槐应助PINKPIG采纳,获得200
13秒前
wenyh完成签到 ,获得积分10
14秒前
2182265539发布了新的文献求助10
14秒前
优秀发布了新的文献求助10
14秒前
14秒前
忆塔基完成签到,获得积分10
14秒前
up完成签到 ,获得积分10
17秒前
20秒前
zyx完成签到,获得积分10
20秒前
Ryan完成签到 ,获得积分10
21秒前
yxa完成签到,获得积分10
23秒前
明杰完成签到,获得积分10
25秒前
xiyang发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709