Magicol: Indoor Localization Using Pervasive Magnetic Field and Opportunistic WiFi Sensing

计算机科学 跟踪(教育) 地球磁场 实时计算 过程(计算) 传感器融合 领域(数学) 磁场 人工智能 数学 纯数学 心理学 教育学 物理 量子力学 操作系统
作者
Yuanchao Shu,Bo Cheng,Guobin Shen,Chunshui Zhao,Liqun Li,Feng Zhao
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 1443-1457 被引量:327
标识
DOI:10.1109/jsac.2015.2430274
摘要

Anomalies of the omnipresent earth magnetic (i.e., geomagnetic) field in an indoor environment, caused by local disturbances due to construction materials, give rise to noisy direction sensing that hinders any dead reckoning system. In this paper, we turn this unpalatable phenomenon into a favorable one. We present Magicol, an indoor localization and tracking system that embraces the local disturbances of the geomagnetic field. We tackle the low discernibility of the magnetic field by vectorizing consecutive magnetic signals on a per-step basis, and use vectors to shape the particle distribution in the estimation process. Magicol can also incorporate WiFi signals to achieve much improved positioning accuracy for indoor environments with WiFi infrastructure. We perform an in-depth study on the fusion of magnetic and WiFi signals. We design a two-pass bidirectional particle filtering process for maximum accuracy, and propose an on-demand WiFi scan strategy for energy savings. We further propose a compliant-walking method for location database construction that drastically simplifies the site survey effort. We conduct extensive experiments at representative indoor environments, including an office building, an underground parking garage, and a supermarket in which Magicol achieved a 90 percentile localization accuracy of 5 m, 1 m, and 8 m, respectively, using the magnetic field alone. The fusion with WiFi leads to 90 percentile accuracy of 3.5 m for localization and 0.9 m for tracking in the office environment. When using only the magnetism, Magicol consumes 9 × less energy in tracking compared to WiFi-based tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
edsenone发布了新的文献求助30
2秒前
zcy完成签到,获得积分10
2秒前
Li完成签到,获得积分10
2秒前
Sky完成签到,获得积分10
3秒前
4秒前
孤独阑香发布了新的文献求助10
4秒前
kk应助赫连紫采纳,获得10
4秒前
任志政完成签到 ,获得积分10
5秒前
5秒前
研友_LMyj0L发布了新的文献求助10
9秒前
可爱飞荷发布了新的文献求助10
9秒前
抱小熊睡觉完成签到,获得积分10
9秒前
10秒前
12秒前
霍旭芳完成签到 ,获得积分10
12秒前
深情安青应助如意小丸子采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
15秒前
16秒前
孤独阑香完成签到,获得积分10
16秒前
酷波er应助小老虎Milly采纳,获得10
17秒前
听风轻语发布了新的文献求助10
18秒前
李健的小迷弟应助luckykk采纳,获得10
18秒前
立冏商完成签到,获得积分10
18秒前
zzz完成签到,获得积分10
19秒前
可爱的函函应助JG采纳,获得10
19秒前
云海老发布了新的文献求助10
19秒前
坤坤完成签到,获得积分10
19秒前
yoo发布了新的文献求助10
19秒前
bsyaa发布了新的文献求助10
20秒前
赵志浩发布了新的文献求助10
21秒前
大观天下完成签到,获得积分10
21秒前
21秒前
如意小丸子完成签到,获得积分10
22秒前
凉凉应助Rqbnicsp采纳,获得10
24秒前
可乐加冰完成签到,获得积分10
25秒前
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010435
求助须知:如何正确求助?哪些是违规求助? 3550258
关于积分的说明 11305330
捐赠科研通 3284688
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811470