重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Magicol: Indoor Localization Using Pervasive Magnetic Field and Opportunistic WiFi Sensing

计算机科学 跟踪(教育) 地球磁场 实时计算 过程(计算) 传感器融合 领域(数学) 磁场 人工智能 心理学 教育学 数学 量子力学 操作系统 物理 纯数学
作者
Yuanchao Shu,Bo Cheng,Guobin Shen,Chunshui Zhao,Liqun Li,Feng Zhao
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 1443-1457 被引量:327
标识
DOI:10.1109/jsac.2015.2430274
摘要

Anomalies of the omnipresent earth magnetic (i.e., geomagnetic) field in an indoor environment, caused by local disturbances due to construction materials, give rise to noisy direction sensing that hinders any dead reckoning system. In this paper, we turn this unpalatable phenomenon into a favorable one. We present Magicol, an indoor localization and tracking system that embraces the local disturbances of the geomagnetic field. We tackle the low discernibility of the magnetic field by vectorizing consecutive magnetic signals on a per-step basis, and use vectors to shape the particle distribution in the estimation process. Magicol can also incorporate WiFi signals to achieve much improved positioning accuracy for indoor environments with WiFi infrastructure. We perform an in-depth study on the fusion of magnetic and WiFi signals. We design a two-pass bidirectional particle filtering process for maximum accuracy, and propose an on-demand WiFi scan strategy for energy savings. We further propose a compliant-walking method for location database construction that drastically simplifies the site survey effort. We conduct extensive experiments at representative indoor environments, including an office building, an underground parking garage, and a supermarket in which Magicol achieved a 90 percentile localization accuracy of 5 m, 1 m, and 8 m, respectively, using the magnetic field alone. The fusion with WiFi leads to 90 percentile accuracy of 3.5 m for localization and 0.9 m for tracking in the office environment. When using only the magnetism, Magicol consumes 9 × less energy in tracking compared to WiFi-based tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助甜甜玫瑰采纳,获得10
刚刚
刚刚
桐桐应助江锦雯采纳,获得10
1秒前
1秒前
1秒前
形随将至发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
seven完成签到,获得积分10
3秒前
4秒前
卡卡西发布了新的文献求助100
4秒前
ti完成签到,获得积分20
4秒前
MHX完成签到,获得积分10
4秒前
4秒前
66发布了新的文献求助30
4秒前
慕青应助lovesonic采纳,获得10
5秒前
zsfzuiishuai发布了新的文献求助30
5秒前
挖药狂魔发布了新的文献求助10
5秒前
LLL完成签到,获得积分10
5秒前
如歌发布了新的文献求助10
5秒前
6秒前
小布丁完成签到,获得积分10
6秒前
6秒前
科目三应助DHL采纳,获得10
7秒前
absb发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
rumengzhuo完成签到,获得积分10
7秒前
汉堡包应助欧阳铭采纳,获得10
8秒前
可爱的函函应助木子采纳,获得10
8秒前
小蘑菇应助qqqqqq采纳,获得10
9秒前
赫连山菡完成签到,获得积分10
9秒前
冷静新烟完成签到 ,获得积分10
9秒前
10秒前
10秒前
vesta完成签到,获得积分10
10秒前
10秒前
10秒前
酷波er应助迷人的寄容采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673