Magicol: Indoor Localization Using Pervasive Magnetic Field and Opportunistic WiFi Sensing

计算机科学 跟踪(教育) 地球磁场 实时计算 过程(计算) 传感器融合 领域(数学) 磁场 人工智能 心理学 教育学 数学 量子力学 操作系统 物理 纯数学
作者
Yuanchao Shu,Bo Cheng,Guobin Shen,Chunshui Zhao,Liqun Li,Feng Zhao
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 1443-1457 被引量:327
标识
DOI:10.1109/jsac.2015.2430274
摘要

Anomalies of the omnipresent earth magnetic (i.e., geomagnetic) field in an indoor environment, caused by local disturbances due to construction materials, give rise to noisy direction sensing that hinders any dead reckoning system. In this paper, we turn this unpalatable phenomenon into a favorable one. We present Magicol, an indoor localization and tracking system that embraces the local disturbances of the geomagnetic field. We tackle the low discernibility of the magnetic field by vectorizing consecutive magnetic signals on a per-step basis, and use vectors to shape the particle distribution in the estimation process. Magicol can also incorporate WiFi signals to achieve much improved positioning accuracy for indoor environments with WiFi infrastructure. We perform an in-depth study on the fusion of magnetic and WiFi signals. We design a two-pass bidirectional particle filtering process for maximum accuracy, and propose an on-demand WiFi scan strategy for energy savings. We further propose a compliant-walking method for location database construction that drastically simplifies the site survey effort. We conduct extensive experiments at representative indoor environments, including an office building, an underground parking garage, and a supermarket in which Magicol achieved a 90 percentile localization accuracy of 5 m, 1 m, and 8 m, respectively, using the magnetic field alone. The fusion with WiFi leads to 90 percentile accuracy of 3.5 m for localization and 0.9 m for tracking in the office environment. When using only the magnetism, Magicol consumes 9 × less energy in tracking compared to WiFi-based tracking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到,获得积分10
刚刚
1秒前
xinbowey完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
LCC发布了新的文献求助10
2秒前
来自二教的神秘力量完成签到,获得积分10
2秒前
3秒前
打打应助LeeSunE采纳,获得30
4秒前
4秒前
Henvy完成签到,获得积分10
4秒前
4秒前
XUXU发布了新的文献求助10
5秒前
5秒前
香蕉觅云应助xzh采纳,获得10
5秒前
脑洞疼应助樂楽采纳,获得10
5秒前
xksy完成签到,获得积分10
5秒前
weiericwang发布了新的文献求助10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
濮阳芷蕊应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
6秒前
山月完成签到 ,获得积分10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
kkuang发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
Alone离殇完成签到,获得积分10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524349
求助须知:如何正确求助?哪些是违规求助? 4614939
关于积分的说明 14545569
捐赠科研通 4552859
什么是DOI,文献DOI怎么找? 2495047
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447419