Magicol: Indoor Localization Using Pervasive Magnetic Field and Opportunistic WiFi Sensing

计算机科学 跟踪(教育) 地球磁场 实时计算 过程(计算) 传感器融合 领域(数学) 磁场 人工智能 心理学 教育学 数学 量子力学 操作系统 物理 纯数学
作者
Yuanchao Shu,Bo Cheng,Guobin Shen,Chunshui Zhao,Liqun Li,Feng Zhao
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:33 (7): 1443-1457 被引量:327
标识
DOI:10.1109/jsac.2015.2430274
摘要

Anomalies of the omnipresent earth magnetic (i.e., geomagnetic) field in an indoor environment, caused by local disturbances due to construction materials, give rise to noisy direction sensing that hinders any dead reckoning system. In this paper, we turn this unpalatable phenomenon into a favorable one. We present Magicol, an indoor localization and tracking system that embraces the local disturbances of the geomagnetic field. We tackle the low discernibility of the magnetic field by vectorizing consecutive magnetic signals on a per-step basis, and use vectors to shape the particle distribution in the estimation process. Magicol can also incorporate WiFi signals to achieve much improved positioning accuracy for indoor environments with WiFi infrastructure. We perform an in-depth study on the fusion of magnetic and WiFi signals. We design a two-pass bidirectional particle filtering process for maximum accuracy, and propose an on-demand WiFi scan strategy for energy savings. We further propose a compliant-walking method for location database construction that drastically simplifies the site survey effort. We conduct extensive experiments at representative indoor environments, including an office building, an underground parking garage, and a supermarket in which Magicol achieved a 90 percentile localization accuracy of 5 m, 1 m, and 8 m, respectively, using the magnetic field alone. The fusion with WiFi leads to 90 percentile accuracy of 3.5 m for localization and 0.9 m for tracking in the office environment. When using only the magnetism, Magicol consumes 9 × less energy in tracking compared to WiFi-based tracking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
延文星发布了新的文献求助10
3秒前
单纯沁完成签到,获得积分10
3秒前
科研通AI6应助xixic采纳,获得10
4秒前
EKKO完成签到,获得积分10
5秒前
倩倩小跟班完成签到,获得积分10
5秒前
AllenFeng发布了新的文献求助10
6秒前
6秒前
小草发布了新的文献求助10
10秒前
风清扬发布了新的文献求助10
10秒前
11秒前
今后应助zz采纳,获得10
12秒前
12秒前
12秒前
tuanzi完成签到,获得积分10
13秒前
南闲竹发布了新的文献求助10
13秒前
Ran完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
shhoing应助玛琪玛小姐的狗采纳,获得10
14秒前
田様应助玛琪玛小姐的狗采纳,获得10
14秒前
15秒前
16秒前
16秒前
17秒前
ipeakkka发布了新的文献求助10
17秒前
风清扬发布了新的文献求助10
18秒前
18秒前
19秒前
思源应助向上向上向上采纳,获得10
20秒前
23秒前
专心搞科研完成签到 ,获得积分10
24秒前
zz发布了新的文献求助10
24秒前
WZX完成签到,获得积分10
24秒前
25秒前
赘婿应助李陈采纳,获得10
25秒前
wubinbin发布了新的文献求助10
26秒前
27秒前
神经外科杨医生完成签到,获得积分10
28秒前
现代萃完成签到,获得积分10
28秒前
天天快乐应助科科采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540496
求助须知:如何正确求助?哪些是违规求助? 4627087
关于积分的说明 14602207
捐赠科研通 4568067
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481989
关于科研通互助平台的介绍 1453623