Construction of chemoreactive heterogeneous nanofibers through strategic coassembly of different proteins

纳米纤维 内化 纳米材料 生物物理学 纳米技术 自组装 细胞外基质 材料科学 化学 生物化学 生物 细胞
作者
Masihuzzaman Ansari,Kailash P. Prajapati,Bibin G. Anand,Paramita Chaudhuri,Shikha Mittal,Karunakar Kar
出处
期刊:Materials Today Nano [Elsevier BV]
卷期号:22: 100317-100317
标识
DOI:10.1016/j.mtnano.2023.100317
摘要

In nature, hierarchically ordered supramolecular assemblies built from protein building blocks become key elements in the composition of both functional nanostructures such as collagens in extracellular matrix, biofilm matrix, and pathological nanostructures including amyloid deposits. Hence, the construction of multiprotein nanoarchitecture is an important research target for innovations in the designing of bioactive nanomaterials. Although β-strand-template-mediated coassembly/cross-seeding of diverse proteins have been reported, the structural and catalytic characteristics of the resultant heterogeneous nanofibers remain largely unknown. Here, we demonstrate the genesis of stable and chemoreactive multiprotein nanofibers via kinetically favored coassembly of diverse proteins with low sequence similarity (insulin, serum albumin, cytochrome c, lysozyme, β-lactoglobulin). The multiprotein-nanofibers contained β-sheet-rich amyloid-like conformers, and we find that gain of charge-complementarity and H-bond-promoting sticky-groups are crucial for fabricating heterogeneous nanofibers. Unlike self-assembly, a lower activation energy barrier was observed for coassembly process, and coaggregation rates increased with increasing degree of heterogeneity in protein mixture. The heterogeneous nanofibers exhibit surface-catalyzing property by hastening dopamine oxidation and triggering amyloid-cross-seeding of diverse proteins, and we also observed their cellular internalization and cytotoxic effect. Our results provide experimental and conceptual foundations for the construction of protein-based hybrid nanomaterials relevant to both biological and material science research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李惊韬发布了新的文献求助10
1秒前
浮游应助wangyl采纳,获得10
1秒前
王武聪发布了新的文献求助10
2秒前
酷波er应助guopeng采纳,获得10
3秒前
为医消得人憔悴完成签到,获得积分10
4秒前
科研通AI5应助天天采纳,获得10
4秒前
负责小蜜蜂完成签到,获得积分10
5秒前
核桃应助wy.he采纳,获得10
5秒前
yuan完成签到,获得积分10
6秒前
善学以致用应助qww采纳,获得10
6秒前
科研通AI2S应助yanganqi采纳,获得10
7秒前
馆长应助文静的如波采纳,获得30
7秒前
present完成签到,获得积分10
9秒前
王舜富完成签到,获得积分20
9秒前
FashionBoy应助王武聪采纳,获得10
9秒前
华仔应助迷人的山灵采纳,获得10
9秒前
jackiewang发布了新的文献求助10
10秒前
SAODEN完成签到,获得积分10
10秒前
独孤阳光完成签到,获得积分10
15秒前
代能能发布了新的文献求助10
17秒前
17秒前
赘婿应助林夏采纳,获得10
18秒前
18秒前
18秒前
狄狄完成签到,获得积分10
19秒前
zxxx完成签到,获得积分10
19秒前
22秒前
xiemou完成签到,获得积分10
22秒前
23秒前
23秒前
余南箕完成签到,获得积分10
24秒前
24秒前
15966014069发布了新的文献求助10
24秒前
天天发布了新的文献求助10
24秒前
多久上课完成签到,获得积分10
25秒前
whoknowsname发布了新的文献求助10
26秒前
慕青应助li采纳,获得10
26秒前
xiemou发布了新的文献求助10
27秒前
小蘑菇应助狄狄采纳,获得10
28秒前
慕新发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538095
求助须知:如何正确求助?哪些是违规求助? 3972801
关于积分的说明 12306882
捐赠科研通 3639551
什么是DOI,文献DOI怎么找? 2003944
邀请新用户注册赠送积分活动 1039353
科研通“疑难数据库(出版商)”最低求助积分说明 928718