Construction of chemoreactive heterogeneous nanofibers through strategic coassembly of different proteins

纳米纤维 内化 纳米材料 生物物理学 纳米技术 自组装 细胞外基质 材料科学 化学 生物化学 生物 细胞
作者
Masihuzzaman Ansari,Kailash P. Prajapati,Bibin G. Anand,Paramita Chaudhuri,Shikha Mittal,Karunakar Kar
出处
期刊:Materials Today Nano [Elsevier]
卷期号:22: 100317-100317
标识
DOI:10.1016/j.mtnano.2023.100317
摘要

In nature, hierarchically ordered supramolecular assemblies built from protein building blocks become key elements in the composition of both functional nanostructures such as collagens in extracellular matrix, biofilm matrix, and pathological nanostructures including amyloid deposits. Hence, the construction of multiprotein nanoarchitecture is an important research target for innovations in the designing of bioactive nanomaterials. Although β-strand-template-mediated coassembly/cross-seeding of diverse proteins have been reported, the structural and catalytic characteristics of the resultant heterogeneous nanofibers remain largely unknown. Here, we demonstrate the genesis of stable and chemoreactive multiprotein nanofibers via kinetically favored coassembly of diverse proteins with low sequence similarity (insulin, serum albumin, cytochrome c, lysozyme, β-lactoglobulin). The multiprotein-nanofibers contained β-sheet-rich amyloid-like conformers, and we find that gain of charge-complementarity and H-bond-promoting sticky-groups are crucial for fabricating heterogeneous nanofibers. Unlike self-assembly, a lower activation energy barrier was observed for coassembly process, and coaggregation rates increased with increasing degree of heterogeneity in protein mixture. The heterogeneous nanofibers exhibit surface-catalyzing property by hastening dopamine oxidation and triggering amyloid-cross-seeding of diverse proteins, and we also observed their cellular internalization and cytotoxic effect. Our results provide experimental and conceptual foundations for the construction of protein-based hybrid nanomaterials relevant to both biological and material science research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张维完成签到,获得积分20
1秒前
星star发布了新的文献求助10
1秒前
2秒前
为之完成签到,获得积分20
3秒前
梦月发布了新的文献求助10
3秒前
3秒前
4秒前
斯文败类应助回忆杀采纳,获得10
4秒前
思源应助jay2000采纳,获得10
5秒前
不如一默发布了新的文献求助10
5秒前
毛豆应助太清采纳,获得10
6秒前
键盘车神完成签到 ,获得积分10
8秒前
干净柏柳完成签到 ,获得积分10
8秒前
美吧发布了新的文献求助30
9秒前
9秒前
9秒前
拓跋书芹发布了新的文献求助10
9秒前
拉二胡的丸子完成签到 ,获得积分20
11秒前
干净的铅笔应助梦月采纳,获得10
12秒前
不如一默完成签到,获得积分10
13秒前
美吧完成签到,获得积分10
14秒前
彭于晏应助zhangzhuopu采纳,获得10
15秒前
星辰大海应助kkkkkkk_采纳,获得10
15秒前
16秒前
乐乐应助http采纳,获得10
18秒前
在水一方应助微凉采纳,获得10
18秒前
赘婿应助张三采纳,获得10
18秒前
科研通AI2S应助Halo采纳,获得10
19秒前
tyf完成签到,获得积分10
19秒前
特立独行的宁宝儿完成签到,获得积分10
19秒前
Y-99完成签到,获得积分10
20秒前
拓跋书芹完成签到,获得积分10
21秒前
21秒前
迷你的思真完成签到,获得积分20
22秒前
Evan666发布了新的文献求助10
22秒前
派先生完成签到,获得积分10
24秒前
薛布慧完成签到 ,获得积分10
24秒前
张三发布了新的文献求助10
24秒前
26秒前
27秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997287
求助须知:如何正确求助?哪些是违规求助? 2657774
关于积分的说明 7193993
捐赠科研通 2293132
什么是DOI,文献DOI怎么找? 1215732
科研通“疑难数据库(出版商)”最低求助积分说明 593300
版权声明 592825