DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning

强化学习 计算机科学 变压器 编码器 药物发现 脚手架 化学空间 人工智能 化学 程序设计语言 工程类 生物化学 操作系统 电气工程 电压
作者
Xuhan Liu,Kai Yang,Herman van Vlijmen,Adriaan P. IJzerman,Gerard J. P. van Westen
出处
期刊:Journal of Cheminformatics [Springer Nature]
卷期号:15 (1) 被引量:13
标识
DOI:10.1186/s13321-023-00694-z
摘要

Abstract Rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified due to the large drug-like chemical space available to search for novel drug-like molecules. With the rapid growth of deep learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previous work we proposed a method named DrugEx , which can be applied in polypharmacology based on multi-objective deep reinforcement learning. However, the previous version is trained under fixed objectives and does not allow users to input any prior information ( i.e. a desired scaffold). In order to improve the general applicability, we updated DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. Here, a Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as output. In order to deal with the graph representation of molecules a novel positional encoding for each atom and bond based on an adjacency matrix was proposed, extending the architecture of the Transformer. The graph Transformer model contains growing and connecting procedures for molecule generation starting from a given scaffold based on fragments. Moreover, the generator was trained under a reinforcement learning framework to increase the number of desired ligands. As a proof of concept, the method was applied to design ligands for the adenosine A 2A receptor (A 2A AR) and compared with SMILES-based methods. The results show that 100% of the generated molecules are valid and most of them had a high predicted affinity value towards A 2A AR with given scaffolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶俊啵啵完成签到 ,获得积分10
1秒前
2秒前
隐形曼青应助王海绵采纳,获得10
2秒前
hugo完成签到,获得积分10
3秒前
着急的如风完成签到,获得积分10
4秒前
4秒前
6秒前
CDQ发布了新的文献求助30
7秒前
正直肖完成签到,获得积分10
7秒前
陈文文完成签到 ,获得积分10
8秒前
8秒前
H哈完成签到,获得积分10
9秒前
9秒前
su发布了新的文献求助10
9秒前
hhllhh啊完成签到 ,获得积分10
10秒前
10秒前
Christina完成签到,获得积分10
11秒前
自觉断秋完成签到,获得积分10
11秒前
ShowMaker应助huco采纳,获得10
11秒前
11秒前
yayoi发布了新的文献求助10
12秒前
赘婿应助hgjgjghgg采纳,获得10
12秒前
lcy发布了新的文献求助10
12秒前
13秒前
_xySH完成签到 ,获得积分10
13秒前
14秒前
qsh完成签到 ,获得积分10
14秒前
tylerconan完成签到 ,获得积分10
14秒前
犹豫嚣完成签到,获得积分20
15秒前
15秒前
孟石三完成签到,获得积分10
15秒前
天行健完成签到,获得积分10
15秒前
打打应助我要发论文采纳,获得10
15秒前
赘婿应助温柔而疏远采纳,获得10
15秒前
CDQ完成签到,获得积分10
16秒前
sunshine发布了新的文献求助20
16秒前
zhvjdb完成签到,获得积分20
17秒前
美女发布了新的文献求助10
17秒前
Sun完成签到,获得积分10
18秒前
爱lx完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143353
求助须知:如何正确求助?哪些是违规求助? 2794636
关于积分的说明 7811842
捐赠科研通 2450801
什么是DOI,文献DOI怎么找? 1304061
科研通“疑难数据库(出版商)”最低求助积分说明 627178
版权声明 601386