DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning

强化学习 计算机科学 变压器 编码器 药物发现 脚手架 化学空间 人工智能 化学 程序设计语言 工程类 生物化学 操作系统 电气工程 电压
作者
Xuhan Liu,Kai Yang,Herman van Vlijmen,Adriaan P. IJzerman,Gerard J. P. van Westen
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:15 (1) 被引量:13
标识
DOI:10.1186/s13321-023-00694-z
摘要

Abstract Rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified due to the large drug-like chemical space available to search for novel drug-like molecules. With the rapid growth of deep learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previous work we proposed a method named DrugEx , which can be applied in polypharmacology based on multi-objective deep reinforcement learning. However, the previous version is trained under fixed objectives and does not allow users to input any prior information ( i.e. a desired scaffold). In order to improve the general applicability, we updated DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. Here, a Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as output. In order to deal with the graph representation of molecules a novel positional encoding for each atom and bond based on an adjacency matrix was proposed, extending the architecture of the Transformer. The graph Transformer model contains growing and connecting procedures for molecule generation starting from a given scaffold based on fragments. Moreover, the generator was trained under a reinforcement learning framework to increase the number of desired ligands. As a proof of concept, the method was applied to design ligands for the adenosine A 2A receptor (A 2A AR) and compared with SMILES-based methods. The results show that 100% of the generated molecules are valid and most of them had a high predicted affinity value towards A 2A AR with given scaffolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豆大魔王完成签到,获得积分10
1秒前
1秒前
guhua完成签到,获得积分10
2秒前
2秒前
2秒前
平淡惜灵发布了新的文献求助10
2秒前
3秒前
拼搏半梦发布了新的文献求助10
3秒前
4秒前
淡然的洙发布了新的文献求助10
4秒前
安东尼奥发布了新的文献求助10
4秒前
4秒前
jailbreaker完成签到 ,获得积分0
5秒前
5秒前
5秒前
yjfff发布了新的文献求助10
5秒前
踏实紫萱发布了新的文献求助10
6秒前
6秒前
向日葵完成签到,获得积分10
6秒前
Jasper应助huskies采纳,获得10
7秒前
8秒前
QC完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
朱之欣完成签到,获得积分10
8秒前
单薄绮露发布了新的文献求助10
9秒前
9秒前
隐形铃铛发布了新的文献求助10
9秒前
上官若男应助宫冷雁采纳,获得10
9秒前
王羊补牢发布了新的文献求助10
10秒前
10秒前
酷波er应助小包包采纳,获得10
10秒前
耍酷依玉发布了新的文献求助10
10秒前
张雯雯完成签到,获得积分10
10秒前
11秒前
Lin发布了新的文献求助10
11秒前
研友_564485完成签到,获得积分10
11秒前
satisusu完成签到 ,获得积分10
11秒前
12秒前
平淡惜灵完成签到,获得积分10
13秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124