DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning

强化学习 计算机科学 变压器 编码器 药物发现 脚手架 化学空间 人工智能 化学 程序设计语言 工程类 生物化学 操作系统 电气工程 电压
作者
Xuhan Liu,Kai Yang,Herman van Vlijmen,Adriaan P. IJzerman,Gerard J. P. van Westen
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:15 (1) 被引量:13
标识
DOI:10.1186/s13321-023-00694-z
摘要

Abstract Rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified due to the large drug-like chemical space available to search for novel drug-like molecules. With the rapid growth of deep learning in drug discovery, a variety of effective approaches have been developed for de novo drug design. In previous work we proposed a method named DrugEx , which can be applied in polypharmacology based on multi-objective deep reinforcement learning. However, the previous version is trained under fixed objectives and does not allow users to input any prior information ( i.e. a desired scaffold). In order to improve the general applicability, we updated DrugEx to design drug molecules based on scaffolds which consist of multiple fragments provided by users. Here, a Transformer model was employed to generate molecular structures. The Transformer is a multi-head self-attention deep learning model containing an encoder to receive scaffolds as input and a decoder to generate molecules as output. In order to deal with the graph representation of molecules a novel positional encoding for each atom and bond based on an adjacency matrix was proposed, extending the architecture of the Transformer. The graph Transformer model contains growing and connecting procedures for molecule generation starting from a given scaffold based on fragments. Moreover, the generator was trained under a reinforcement learning framework to increase the number of desired ligands. As a proof of concept, the method was applied to design ligands for the adenosine A 2A receptor (A 2A AR) and compared with SMILES-based methods. The results show that 100% of the generated molecules are valid and most of them had a high predicted affinity value towards A 2A AR with given scaffolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yw发布了新的文献求助10
刚刚
777完成签到,获得积分10
刚刚
小二郎应助哈喽小雪采纳,获得10
1秒前
2秒前
长安完成签到,获得积分10
2秒前
医者修心完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
6秒前
wryyyn发布了新的文献求助10
7秒前
林药师发布了新的文献求助200
7秒前
ronnie发布了新的文献求助10
8秒前
梗梗发布了新的文献求助10
8秒前
9秒前
小马甲应助xuan采纳,获得10
9秒前
怕黑的擎发布了新的文献求助10
9秒前
10秒前
我是老大应助wuwei采纳,获得10
10秒前
SciGPT应助喜悦又菡采纳,获得10
11秒前
tS717发布了新的文献求助10
12秒前
ZOE应助kento采纳,获得50
12秒前
siriuslee99完成签到,获得积分10
12秒前
13秒前
李健应助Li采纳,获得10
13秒前
13秒前
爆米花应助tao采纳,获得10
13秒前
西高所发布了新的文献求助10
14秒前
14秒前
我是老大应助dongdongduaya采纳,获得30
14秒前
风清扬发布了新的文献求助10
14秒前
西米完成签到,获得积分10
15秒前
zhangpeipei完成签到,获得积分10
15秒前
晴天完成签到 ,获得积分10
16秒前
优雅期待完成签到,获得积分10
16秒前
皮卡丘完成签到 ,获得积分0
18秒前
比个耶发布了新的文献求助10
19秒前
xuan发布了新的文献求助10
20秒前
Ava应助怕黑的擎采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196657
求助须知:如何正确求助?哪些是违规求助? 4378232
关于积分的说明 13635659
捐赠科研通 4233741
什么是DOI,文献DOI怎么找? 2322414
邀请新用户注册赠送积分活动 1320532
关于科研通互助平台的介绍 1270952