Dual-branche attention network for super-resolution of remote sensing images

失真(音乐) 对偶(语法数字) 串联(数学) 特征(语言学) 相似性(几何) 棱锥(几何) 计算机科学 噪音(视频) 残余物 特征提取 模式识别(心理学) 图像(数学) 人工智能 算法 数学 电信 文学类 艺术 放大器 语言学 哲学 几何学 带宽(计算) 组合数学
作者
Fei Huang,Ting Xie,Zhengcai Liu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (2): 492-516 被引量:1
标识
DOI:10.1080/01431161.2023.2166370
摘要

Remote sensing (RS) images are considered to be reflections of the real world. However, RS images often suffered from low resolution, making further research difficult to follow. Although super resolution (SR) techniques based on deep learning have achieved considerable breakthroughs, they show limited performance when dealing with low-quality RS images with complicated backgrounds; for instance, the SR results tend to loss details and have undesired structural distortion. Thus, this paper proposes an innovative dual-branch attention network (DBAN) to produce sufficient details and preserve clear structural information for SR results of RS images. It consists of two components: a feature extraction branch and a high-frequency information learning branch. The features extraction branch, formed as a densely residual structure, combines a series of dual attention blocks that are designed to exploit valid features from different dimensions, and then all these multi-scale features are reused through a global concatenation. The high-frequency information extraction branch, incorporating noise removing units (NRU) and high-frequency attention units (HFU), is responsible for producing the high-frequency features without noise, which enables DBAN to handle the problem of structural distortion. Meanwhile, a composite loss function based on a Laplacian pyramid is proposed to maximize the structural similarity between reconstruction results and real high-resolution RS images. The proposed network is efficient and lightweight because of its strong and effective attention to feature learning. Experimental results on three open-source RS image datasets and the JiLin-01 dataset demonstrate the effectiveness of our DBAN where higher accuracy over state-of-the-art methods in super-resolving complicated images was achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
南巷完成签到 ,获得积分10
4秒前
英俊的铭应助拓跋雨梅采纳,获得10
6秒前
Carol完成签到,获得积分10
7秒前
投篮不起跳完成签到 ,获得积分10
7秒前
9秒前
qinli给qinli的求助进行了留言
9秒前
ysea完成签到,获得积分10
10秒前
99giddens应助超级大猩猩采纳,获得10
11秒前
藏识完成签到,获得积分10
11秒前
Cheshire完成签到,获得积分10
12秒前
14秒前
七个小矮人完成签到 ,获得积分10
15秒前
nan完成签到,获得积分10
17秒前
尊敬乐蕊发布了新的文献求助10
19秒前
Ashley完成签到 ,获得积分10
20秒前
20秒前
害羞的网络完成签到,获得积分10
21秒前
wxm发布了新的文献求助10
21秒前
伊麦香城完成签到,获得积分10
23秒前
周水吉吖完成签到 ,获得积分10
24秒前
追寻绮玉完成签到,获得积分10
24秒前
xshuang完成签到,获得积分10
26秒前
伊麦香城发布了新的文献求助10
26秒前
CodeCraft应助尊敬乐蕊采纳,获得10
27秒前
32秒前
33秒前
超级大猩猩完成签到,获得积分10
34秒前
共享精神应助谦让诗采纳,获得10
35秒前
JL完成签到 ,获得积分10
35秒前
开心的秋寒完成签到 ,获得积分10
37秒前
37秒前
asipilin完成签到,获得积分10
38秒前
39秒前
LYSnow7完成签到 ,获得积分10
39秒前
45秒前
尊敬乐蕊发布了新的文献求助10
45秒前
46秒前
47秒前
阿分完成签到,获得积分10
49秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194