亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight tomato real-time detection method based on improved YOLO and mobile deployment

帧速率 卷积神经网络 计算机科学 修剪 图形处理单元 实时计算 失败 算法 人工智能 并行计算 农学 生物
作者
Taiheng Zeng,Siyi Li,Qiming Song,Fenglin Zhong,Xuan Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107625-107625 被引量:119
标识
DOI:10.1016/j.compag.2023.107625
摘要

The current deep-learning-based tomato target detection algorithm has many parameters; it has drawbacks of large computation, long time consumption, and reliance on high-computing-power devices such as graphics processing units (GPU). In this study, we propose a lightweight improved YOLOv5 (You Only Look Once) based algorithm to achieve real-time localization and ripeness detection of tomato fruits. Initially, this algorithm used a down-sampling convolutional layer instead of the original focus layer, reconstructing the backbone network of YOLOv5 using the bneck module of MobileNetV3. Then, it performs channel pruning for the neck layer to further reduce the model size and uses a genetic algorithm for hyperparameter optimization to improve detection accuracy. We evaluate the improved algorithm using a homemade tomato dataset. The experimental results demonstrated that the improved model number of parameters and floating point operations per second (FLOPs) were compressed by 78% and 84.15% compared to the original YOLOv5s, while the mAP reached 0.969. Meanwhile, the detection speed on the central processing unit (CPU) platform was 42.5 ms, which was 64.88% better. This study further utilized the Nihui convolutional neural network (NCNN) framework to quantize the improved model and developed an Android-based real-time tomato monitoring application (app). Experimental results demonstrated that the 16-bit quantized model achieved an average detection frame rate of 26.5 frames per second (fps) on the mobile side with lower arithmetic power, which was 268% better than the original YOLOv5s, and the model size was reduced by 51.1% while achieving a 93% true detection rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小灵通完成签到 ,获得积分10
2秒前
lzl008完成签到 ,获得积分10
2秒前
4秒前
辛夷完成签到,获得积分10
13秒前
lzl007完成签到 ,获得积分10
18秒前
米粒完成签到,获得积分10
19秒前
jueshadi发布了新的文献求助10
23秒前
伍奄发布了新的文献求助10
26秒前
28秒前
ceeray23发布了新的文献求助20
31秒前
sunhhhh完成签到 ,获得积分10
36秒前
伍奄完成签到,获得积分10
45秒前
朴实飞松完成签到 ,获得积分10
50秒前
50秒前
yx_cheng应助执着乐双采纳,获得30
51秒前
艺涵完成签到,获得积分10
52秒前
54秒前
小胡萝白发布了新的文献求助10
56秒前
CipherSage应助虚心沂采纳,获得10
57秒前
彭于晏应助小胡萝白采纳,获得10
1分钟前
Charles完成签到,获得积分10
1分钟前
anonym11完成签到,获得积分10
1分钟前
CodeCraft应助kingyz采纳,获得20
1分钟前
ice完成签到 ,获得积分10
1分钟前
大个应助mmyhn采纳,获得10
1分钟前
希望天下0贩的0应助akakns采纳,获得10
1分钟前
1分钟前
我爱康康文献完成签到 ,获得积分10
1分钟前
akakns发布了新的文献求助10
1分钟前
yuyuyu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
起风了完成签到 ,获得积分10
1分钟前
核桃发布了新的文献求助10
1分钟前
Dz1990m完成签到,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
zhscu完成签到,获得积分10
1分钟前
小马甲应助Dr.miao采纳,获得10
1分钟前
cqhecq完成签到,获得积分10
1分钟前
健壮的若冰完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994955
求助须知:如何正确求助?哪些是违规求助? 3535071
关于积分的说明 11267066
捐赠科研通 3274842
什么是DOI,文献DOI怎么找? 1806483
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809762