Lightweight tomato real-time detection method based on improved YOLO and mobile deployment

帧速率 卷积神经网络 计算机科学 修剪 图形处理单元 实时计算 失败 算法 人工智能 并行计算 农学 生物
作者
Taiheng Zeng,Siyi Li,Qiming Song,Fenglin Zhong,Xuan Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:205: 107625-107625 被引量:83
标识
DOI:10.1016/j.compag.2023.107625
摘要

The current deep-learning-based tomato target detection algorithm has many parameters; it has drawbacks of large computation, long time consumption, and reliance on high-computing-power devices such as graphics processing units (GPU). In this study, we propose a lightweight improved YOLOv5 (You Only Look Once) based algorithm to achieve real-time localization and ripeness detection of tomato fruits. Initially, this algorithm used a down-sampling convolutional layer instead of the original focus layer, reconstructing the backbone network of YOLOv5 using the bneck module of MobileNetV3. Then, it performs channel pruning for the neck layer to further reduce the model size and uses a genetic algorithm for hyperparameter optimization to improve detection accuracy. We evaluate the improved algorithm using a homemade tomato dataset. The experimental results demonstrated that the improved model number of parameters and floating point operations per second (FLOPs) were compressed by 78% and 84.15% compared to the original YOLOv5s, while the mAP reached 0.969. Meanwhile, the detection speed on the central processing unit (CPU) platform was 42.5 ms, which was 64.88% better. This study further utilized the Nihui convolutional neural network (NCNN) framework to quantize the improved model and developed an Android-based real-time tomato monitoring application (app). Experimental results demonstrated that the 16-bit quantized model achieved an average detection frame rate of 26.5 frames per second (fps) on the mobile side with lower arithmetic power, which was 268% better than the original YOLOv5s, and the model size was reduced by 51.1% while achieving a 93% true detection rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Dr.Tang采纳,获得10
刚刚
晨曦完成签到,获得积分10
刚刚
迟大猫应助细腻白柏采纳,获得10
刚刚
白白完成签到,获得积分10
1秒前
1秒前
1秒前
安静的难破完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
飞跃完成签到,获得积分10
2秒前
2秒前
2秒前
HEIKU应助热心的早晨采纳,获得10
3秒前
xxx发布了新的文献求助10
4秒前
科研通AI5应助nuliya采纳,获得10
4秒前
kira完成签到,获得积分10
5秒前
刘星星发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
汉堡包应助LYM采纳,获得10
6秒前
吉势甘发布了新的文献求助10
6秒前
zhu应助七块采纳,获得10
7秒前
8秒前
SweepingMonk应助kkkkkw采纳,获得10
8秒前
Summer完成签到,获得积分10
8秒前
研友_VZG7GZ应助starryxm采纳,获得10
8秒前
8秒前
WilsonT发布了新的文献求助20
8秒前
3-HP完成签到,获得积分10
8秒前
8秒前
kira发布了新的文献求助10
8秒前
大个应助丸子采纳,获得10
9秒前
EiRoco_0r完成签到,获得积分10
9秒前
wendinfgmei完成签到,获得积分10
9秒前
9秒前
10秒前
小前途完成签到,获得积分10
10秒前
大方小白发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678