Lightweight tomato real-time detection method based on improved YOLO and mobile deployment

帧速率 卷积神经网络 计算机科学 修剪 图形处理单元 实时计算 失败 算法 人工智能 并行计算 农学 生物
作者
Taiheng Zeng,Siyi Li,Qiming Song,Fenglin Zhong,Xuan Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:205: 107625-107625 被引量:60
标识
DOI:10.1016/j.compag.2023.107625
摘要

The current deep-learning-based tomato target detection algorithm has many parameters; it has drawbacks of large computation, long time consumption, and reliance on high-computing-power devices such as graphics processing units (GPU). In this study, we propose a lightweight improved YOLOv5 (You Only Look Once) based algorithm to achieve real-time localization and ripeness detection of tomato fruits. Initially, this algorithm used a down-sampling convolutional layer instead of the original focus layer, reconstructing the backbone network of YOLOv5 using the bneck module of MobileNetV3. Then, it performs channel pruning for the neck layer to further reduce the model size and uses a genetic algorithm for hyperparameter optimization to improve detection accuracy. We evaluate the improved algorithm using a homemade tomato dataset. The experimental results demonstrated that the improved model number of parameters and floating point operations per second (FLOPs) were compressed by 78% and 84.15% compared to the original YOLOv5s, while the mAP reached 0.969. Meanwhile, the detection speed on the central processing unit (CPU) platform was 42.5 ms, which was 64.88% better. This study further utilized the Nihui convolutional neural network (NCNN) framework to quantize the improved model and developed an Android-based real-time tomato monitoring application (app). Experimental results demonstrated that the 16-bit quantized model achieved an average detection frame rate of 26.5 frames per second (fps) on the mobile side with lower arithmetic power, which was 268% better than the original YOLOv5s, and the model size was reduced by 51.1% while achieving a 93% true detection rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁静致远完成签到,获得积分0
刚刚
小羊发布了新的文献求助10
刚刚
05完成签到 ,获得积分10
刚刚
wbh发布了新的文献求助10
2秒前
炙热的萤发布了新的文献求助10
2秒前
Jasper应助满意采纳,获得10
2秒前
sanyecai完成签到,获得积分10
3秒前
记忆完成签到,获得积分10
3秒前
碧蓝雁风完成签到 ,获得积分10
4秒前
阳光的道消完成签到,获得积分10
4秒前
开心的谷兰完成签到,获得积分10
4秒前
中央戏精学院完成签到,获得积分10
5秒前
科研猫完成签到,获得积分10
6秒前
太叔十三完成签到,获得积分10
7秒前
思源应助寒霁采纳,获得10
7秒前
10秒前
10秒前
阳光的凝冬完成签到 ,获得积分10
10秒前
斯文败类应助成就小懒猪采纳,获得10
10秒前
研友_LX7478完成签到,获得积分10
11秒前
呼呼完成签到,获得积分10
12秒前
12秒前
小蜜蜂完成签到,获得积分10
13秒前
哈哈环完成签到 ,获得积分10
13秒前
Akim应助炙热的萤采纳,获得10
14秒前
fengfeng完成签到 ,获得积分10
14秒前
ProfWang完成签到,获得积分10
14秒前
麻瓜小羊完成签到,获得积分10
14秒前
fanssw完成签到 ,获得积分10
15秒前
fedehe完成签到 ,获得积分10
16秒前
专注的水壶完成签到 ,获得积分10
16秒前
在水一方应助威哥采纳,获得10
16秒前
小七发布了新的文献求助10
16秒前
陈怼怼完成签到,获得积分10
17秒前
支觅露完成签到 ,获得积分10
17秒前
kbj完成签到,获得积分10
17秒前
呼呼发布了新的文献求助10
17秒前
科研小白完成签到,获得积分10
18秒前
小白发布了新的文献求助10
19秒前
勤奋流沙完成签到 ,获得积分10
20秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807722
捐赠科研通 2450106
什么是DOI,文献DOI怎么找? 1303653
科研通“疑难数据库(出版商)”最低求助积分说明 627017
版权声明 601350