Association between periodontitis and breast cancer: two-sample Mendelian randomization study

孟德尔随机化 乳腺癌 牙周炎 医学 多效性 癌症 肿瘤科 全基因组关联研究 遗传关联 内科学 生物信息学 单核苷酸多态性 遗传学 生物 基因型 遗传变异 基因 表型
作者
Ming Ding,Zhonghua Zhang,Zhu Chen,Jukun Song,Beichuan Wang,Fuqian Jin
出处
期刊:Clinical Oral Investigations [Springer Nature]
卷期号:27 (6): 2843-2849 被引量:5
标识
DOI:10.1007/s00784-023-04874-x
摘要

The purpose of this study was to investigate whether there is a causal relationship between periodontitis and breast cancer by Mendelian randomization analysis.We performed a two-sample bidirectional Mendelian randomization (MR) analysis using publicly released genome-wide association studies (GWAS) statistics. The inverse-variance weighted (IVW) method was used as the primary analysis. We applied complementary methods, including weighted median, weighted mode, simple mode, MR-Egger regression, and MR-pleiotropy residual sum and outlier (MR-PRESSO) to detect and correct for the effect of horizontal pleiotropy.IVW MR analysis showed no effect of periodontitis on breast cancer (IVW OR=0.99, P =0.14). Similarly, no significant causal relationship between breast cancer and periodontitis was found in reverse MR analysis (IVW OR=0.95, P =0.83). The results of MR-Egger regression, weighted median, and weighted mode methods were consistent with those of the IVW method. Based on sensitivity analyses, horizontal pleiotropy is unlikely to distort causal estimates.Although observational studies have reported an association between periodontitis and breast cancer, the results of our MR analysis do not support a causal relationship between periodontitis and breast cancer.Mendelian randomization study can more clearly analyze the causal relationship between periodontitis and breast cancer, in order to provide a certain reference for clinicians and deepen the understanding of the relationship between periodontitis and breast cancer, to explore more possible associations between periodontitis and systemic diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸笑白发布了新的文献求助10
刚刚
刚刚
研友_LOK59L完成签到,获得积分10
2秒前
七子完成签到 ,获得积分10
3秒前
郑盼秋完成签到,获得积分10
3秒前
youjiang发布了新的文献求助10
4秒前
6秒前
孤独收割人完成签到,获得积分10
6秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
8秒前
Upupcc发布了新的文献求助10
10秒前
10秒前
勤劳落雁发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
周周发布了新的文献求助10
12秒前
13秒前
科研通AI5应助解青文采纳,获得10
13秒前
科研通AI5应助魏伯安采纳,获得30
13秒前
nekoneko完成签到,获得积分10
16秒前
16秒前
17秒前
帅关发布了新的文献求助10
17秒前
yyyyy语言发布了新的文献求助10
18秒前
asheng98完成签到 ,获得积分10
19秒前
Chen完成签到,获得积分10
19秒前
慕青应助guajiguaji采纳,获得10
20秒前
圣晟胜发布了新的文献求助10
21秒前
21秒前
21秒前
不会失忆完成签到,获得积分10
23秒前
思源应助路边一颗小草采纳,获得10
23秒前
上官若男应助帅关采纳,获得10
24秒前
qin完成签到,获得积分10
25秒前
25秒前
流浪小诗人完成签到,获得积分10
25秒前
27秒前
知性的觅露完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849