Distributed Node Classification with Graph Attention Networks

计算机科学 可扩展性 工作流程 分布式计算 图形 人工智能 大数据 机器学习 深度学习 软件部署 功率图分析 理论计算机科学 数据挖掘 数据库 软件工程
作者
Roberto Corizzo,Terry Slenn
标识
DOI:10.1109/bigdata55660.2022.10020664
摘要

Developing scalable machine learning solutions that meet the demand of real-world applications is crucially important in domains such as cybersecurity, smart grids, and social networks. Despite the rising interest in the analysis of graph data using big data frameworks, existing works are usually limited to the adoption of conventional machine learning models, due to their simplicity and availability as off-the-shelf algorithms in popular libraries. As a result, resorting to more sophisticated models such as deep neural networks for graph analysis in a fully distributed learning setting is still an open challenge. In this paper, we propose a distributed workflow for node classification in graphs. We focus on graph attention networks, and devise a distributed model training approach leveraging the Apache Spark, GraphX, and Horovod frameworks. Our workflow consists of feature engineering, graph partitioning, model deployment, and model training stages, which take place in a fully distributed manner. Experimental results show that leveraging graph partitioning is a feasible strategy for distributed model training on multiple workers equipped with GPUs. Specifi-cally, the randomized and informed graph partitioning strategies analyzed in our experiments present satisfactory results in terms of both accuracy and scalability with two benchmark graph datasets for node classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
dong应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
英姑应助科研通管家采纳,获得10
1秒前
LJ发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
HY完成签到,获得积分10
3秒前
Loooong发布了新的文献求助10
3秒前
yy完成签到,获得积分10
3秒前
狂野忆文发布了新的文献求助10
4秒前
abc完成签到,获得积分10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027