Upper Body Pose Estimation Using a Visual–Inertial Sensor System With Automatic Sensor-to-Segment Calibration

惯性测量装置 计算机视觉 人工智能 传感器融合 校准 运动学 计算机科学 正向运动学 计量单位 运动捕捉 姿势 数学 运动(物理) 机器人 反向动力学 物理 统计 经典力学 量子力学
作者
Tong Li,Haoyong Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 6292-6302 被引量:13
标识
DOI:10.1109/jsen.2023.3241084
摘要

Upper body kinematics is essential for motor function assessment and robot-assisted rehabilitation training. Wearable sensor systems, such as inertial measurement units (IMUs), provide affordable solutions to replace laboratory-based motion capture systems for use in daily life. However, the sensor-to-segment calibration often relies on predefined posture or movements, which is hard to perform accurately, particularly for patients with a limited range of motion. A visual–inertial sensor system is presented, which includes three sensor modules attached to the trunk, upper arm, and forearm. Each module has an IMU and an ArUco marker, which can be captured by a camera and the driftless orientation of the modules is computed from visual–inertial fusion. The sensor-to-segment transformations are calibrated from a period of arbitrary arm movements in either a 2-D plane or 3-D space, simulating the training process assisted by end-effector robots. Experiments were conducted to validate the feasibility and evaluate the accuracy of the proposed method. The estimated shoulder and elbow joint angles correlated well ( $>$ 0.986) with the ground truth from the optical motion capture (OMC) system. The joint angles presented low root-mean-square errors (RMSEs) ( $< 4^{\circ }$ ) except for the forearm pronation–supination angle (9.34°), which relied on manual alignment. The sensor system provides a simple and easy-to-use solution for movement assessment during robot-assisted training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力白开水完成签到,获得积分20
刚刚
小蒲完成签到 ,获得积分10
1秒前
万能图书馆应助大力鱼采纳,获得10
1秒前
2秒前
Rrr发布了新的文献求助10
3秒前
跳跃的静曼完成签到,获得积分10
3秒前
丰富的不惜完成签到,获得积分10
4秒前
5秒前
wfc完成签到,获得积分10
5秒前
浅梨涡完成签到 ,获得积分10
7秒前
JamesPei应助椰子熟了耶采纳,获得20
8秒前
hanyang965发布了新的文献求助10
8秒前
orixero应助喵呜采纳,获得10
8秒前
8秒前
8秒前
9秒前
en发布了新的文献求助10
9秒前
10秒前
白宝宝北北白应助氕氘氚采纳,获得10
10秒前
11秒前
进取拼搏完成签到,获得积分10
11秒前
hehsk完成签到,获得积分10
11秒前
无限鞅完成签到,获得积分20
11秒前
12秒前
DY完成签到 ,获得积分10
13秒前
郑仕完成签到,获得积分10
13秒前
13秒前
进取拼搏发布了新的文献求助10
14秒前
顺顺发布了新的文献求助10
14秒前
14秒前
在水一方应助涛涛采纳,获得10
14秒前
英姑应助义气的傲松采纳,获得10
15秒前
15秒前
哭泣蛋挞完成签到 ,获得积分10
16秒前
sweetbearm应助通~采纳,获得10
16秒前
田様应助吃饭用大碗采纳,获得10
17秒前
17秒前
18秒前
19秒前
阿斯蒂和琴酒完成签到 ,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808