已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Upper Body Pose Estimation Using a Visual–Inertial Sensor System With Automatic Sensor-to-Segment Calibration

惯性测量装置 计算机视觉 人工智能 传感器融合 校准 运动学 计算机科学 正向运动学 计量单位 运动捕捉 姿势 数学 运动(物理) 机器人 反向动力学 物理 统计 经典力学 量子力学
作者
Tong Li,Haoyong Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 6292-6302 被引量:13
标识
DOI:10.1109/jsen.2023.3241084
摘要

Upper body kinematics is essential for motor function assessment and robot-assisted rehabilitation training. Wearable sensor systems, such as inertial measurement units (IMUs), provide affordable solutions to replace laboratory-based motion capture systems for use in daily life. However, the sensor-to-segment calibration often relies on predefined posture or movements, which is hard to perform accurately, particularly for patients with a limited range of motion. A visual–inertial sensor system is presented, which includes three sensor modules attached to the trunk, upper arm, and forearm. Each module has an IMU and an ArUco marker, which can be captured by a camera and the driftless orientation of the modules is computed from visual–inertial fusion. The sensor-to-segment transformations are calibrated from a period of arbitrary arm movements in either a 2-D plane or 3-D space, simulating the training process assisted by end-effector robots. Experiments were conducted to validate the feasibility and evaluate the accuracy of the proposed method. The estimated shoulder and elbow joint angles correlated well ( $>$ 0.986) with the ground truth from the optical motion capture (OMC) system. The joint angles presented low root-mean-square errors (RMSEs) ( $< 4^{\circ }$ ) except for the forearm pronation–supination angle (9.34°), which relied on manual alignment. The sensor system provides a simple and easy-to-use solution for movement assessment during robot-assisted training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
单身的钧发布了新的文献求助10
2秒前
旭日完成签到,获得积分10
3秒前
丁爽发布了新的文献求助10
6秒前
Wellbeing完成签到,获得积分10
7秒前
Limerencia完成签到,获得积分10
9秒前
小枣完成签到 ,获得积分10
11秒前
Nefelibata完成签到,获得积分10
14秒前
天天快乐应助popot采纳,获得10
14秒前
15秒前
15秒前
燕尔蓝完成签到,获得积分10
18秒前
22秒前
东方天奇发布了新的文献求助10
23秒前
荔枝多酚发布了新的文献求助10
26秒前
hyaoooo完成签到 ,获得积分10
29秒前
32秒前
单身的钧完成签到,获得积分10
38秒前
40秒前
9752249完成签到,获得积分10
40秒前
科研小白狗完成签到 ,获得积分10
40秒前
prosperp应助丁爽采纳,获得10
43秒前
胖鲤鱼完成签到,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
杳鸢应助科研通管家采纳,获得30
49秒前
49秒前
丁爽完成签到,获得积分10
51秒前
123完成签到 ,获得积分20
52秒前
Mark_He发布了新的文献求助20
53秒前
54秒前
54秒前
杳鸢应助123采纳,获得30
58秒前
58秒前
专注凌文发布了新的文献求助10
59秒前
59秒前
星辰大海应助zcg采纳,获得10
1分钟前
1分钟前
Yannis发布了新的文献求助10
1分钟前
scarlet完成签到 ,获得积分10
1分钟前
寒冷的金鱼完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499960
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428784
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382