Upper Body Pose Estimation Using a Visual–Inertial Sensor System With Automatic Sensor-to-Segment Calibration

惯性测量装置 计算机视觉 人工智能 传感器融合 校准 运动学 计算机科学 正向运动学 计量单位 运动捕捉 姿势 数学 运动(物理) 机器人 反向动力学 物理 量子力学 经典力学 统计
作者
Tong Li,Haoyong Yu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (6): 6292-6302 被引量:13
标识
DOI:10.1109/jsen.2023.3241084
摘要

Upper body kinematics is essential for motor function assessment and robot-assisted rehabilitation training. Wearable sensor systems, such as inertial measurement units (IMUs), provide affordable solutions to replace laboratory-based motion capture systems for use in daily life. However, the sensor-to-segment calibration often relies on predefined posture or movements, which is hard to perform accurately, particularly for patients with a limited range of motion. A visual–inertial sensor system is presented, which includes three sensor modules attached to the trunk, upper arm, and forearm. Each module has an IMU and an ArUco marker, which can be captured by a camera and the driftless orientation of the modules is computed from visual–inertial fusion. The sensor-to-segment transformations are calibrated from a period of arbitrary arm movements in either a 2-D plane or 3-D space, simulating the training process assisted by end-effector robots. Experiments were conducted to validate the feasibility and evaluate the accuracy of the proposed method. The estimated shoulder and elbow joint angles correlated well ( $>$ 0.986) with the ground truth from the optical motion capture (OMC) system. The joint angles presented low root-mean-square errors (RMSEs) ( $< 4^{\circ }$ ) except for the forearm pronation–supination angle (9.34°), which relied on manual alignment. The sensor system provides a simple and easy-to-use solution for movement assessment during robot-assisted training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
易达发布了新的文献求助10
1秒前
时尚凝冬发布了新的文献求助10
1秒前
子车定帮完成签到,获得积分10
2秒前
3秒前
小鹅发布了新的文献求助10
3秒前
丘比特应助比巴卜采纳,获得10
4秒前
ChengYonghui完成签到,获得积分10
4秒前
lipppfff发布了新的文献求助10
4秒前
新手鼓手发布了新的文献求助10
5秒前
5秒前
ACE完成签到,获得积分10
5秒前
SciGPT应助亦依然采纳,获得10
7秒前
薏米人儿完成签到 ,获得积分10
7秒前
慕青应助西子阳采纳,获得10
8秒前
10秒前
大模型应助liuzengzhang666采纳,获得10
11秒前
12秒前
跳跃不凡完成签到 ,获得积分10
12秒前
落后乘风完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
比巴卜发布了新的文献求助10
14秒前
魏一刀发布了新的文献求助10
16秒前
16秒前
呵呵发布了新的文献求助10
18秒前
18秒前
领导范儿应助西子阳采纳,获得10
20秒前
21秒前
胡茶茶完成签到 ,获得积分10
22秒前
谨慎鞅完成签到,获得积分10
22秒前
Ava应助lh采纳,获得10
22秒前
23秒前
ugot完成签到,获得积分10
23秒前
Eunice完成签到,获得积分10
23秒前
上官若男应助呵呵采纳,获得10
26秒前
大方尔珍发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070