已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Career Mobility Analysis With Uncertainty-Aware Graph Autoencoders: A Job Title Transition Perspective

计算机科学 标杆管理 图形 透视图(图形) 人工智能 机器学习 数据科学 理论计算机科学 营销 业务
作者
Rui Zha,Chuan Qin,Le Zhang,D. Z. Shen,Tong Xu,Hengshu Zhu,Enhong Chen
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 1205-1215 被引量:10
标识
DOI:10.1109/tcss.2023.3239038
摘要

Career mobility analysis aims at discovering the movement patterns of employees across different job positions or grades, which can benefit various human resource-related applications. Indeed, recent studies in this direction mainly focus on modeling individual career trajectories, while the macroguidance for labor market assessment has been largely ignored. To this end, in this article, we propose to study career mobility from a market-driven perspective based on large-scale online professional networks (OPNs). Specifically, we propose an uncertainty-aware graph autoencoders (UnGAEs) framework, which can simultaneously discover potential job title transition patterns and predict job durations. In this phase, we first construct a job title transition graph based on massive career trajectory data from OPNs. Then, considering the inherent uncertainty in career mobility, we introduce a novel uncertainty-aware graph encoder (UnGE) to represent job titles as Gaussian embeddings. Furthermore, we design two task-specific decoders that can preserve the asymmetric relationships between job titles, namely the gravity-inspired decoder (GID) and the energy-inspired decoder (EID), for predicting potential transition patterns and corresponding duration, respectively. In particular, both tasks are modeled through a specially designed multitask learning approach. Finally, extensive experiments on a real-world dataset clearly demonstrate the effectiveness of UnGAE compared with state-of-the-art baselines, as well as some potential applications such as job title benchmarking and career path planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的皮卡丘完成签到,获得积分20
3秒前
自由的枕头完成签到 ,获得积分10
4秒前
QH完成签到,获得积分10
4秒前
6秒前
7秒前
马博发布了新的文献求助10
7秒前
王永明发布了新的文献求助10
7秒前
9秒前
满意人英发布了新的文献求助10
10秒前
善学以致用应助vgdrg采纳,获得10
10秒前
11秒前
拼搏听寒发布了新的文献求助10
12秒前
彭于晏应助大林小隐采纳,获得30
14秒前
深情安青应助协和_子鱼采纳,获得10
16秒前
科研通AI5应助hym111采纳,获得10
17秒前
鹿边小摊完成签到,获得积分10
19秒前
热闹的冬天完成签到,获得积分10
19秒前
马博完成签到,获得积分20
20秒前
隐形曼青应助服部平次采纳,获得10
21秒前
22秒前
22秒前
王永明完成签到,获得积分10
22秒前
Loooong应助满意人英采纳,获得10
23秒前
vgdrg发布了新的文献求助10
25秒前
cocolu应助arthurge采纳,获得10
25秒前
cocolu应助arthurge采纳,获得10
25秒前
cocolu应助arthurge采纳,获得10
25秒前
111发布了新的文献求助10
27秒前
欣慰的海豚完成签到 ,获得积分10
27秒前
28秒前
30秒前
30秒前
苏苏发布了新的文献求助10
31秒前
32秒前
服部平次发布了新的文献求助10
35秒前
小马发布了新的文献求助10
35秒前
科研通AI5应助火星上云朵采纳,获得10
36秒前
情怀应助errui采纳,获得10
37秒前
You发布了新的文献求助10
38秒前
科研通AI5应助年轻的听露采纳,获得100
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491104
求助须知:如何正确求助?哪些是违规求助? 3077781
关于积分的说明 9150387
捐赠科研通 2770232
什么是DOI,文献DOI怎么找? 1520217
邀请新用户注册赠送积分活动 704513
科研通“疑难数据库(出版商)”最低求助积分说明 702196