Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach

冷冻机 海水淡化 传质 材料科学 工艺工程 吸附 环境科学 传热 流态化 水冷 传热系数 传质系数 余热 水蒸气 温室气体 流化床 废物管理 环境工程 热力学 热交换器 机械工程 气象学 工程类 化学 物理 生物 有机化学 生物化学 生态学
作者
Jarosław Krzywański,Dorian Skrobek,Anna Żyłka,Karolina Grabowska,Anna Kulakowska,Marcin Sosnowski,W. Nowak,Ana M. Blanco-Marigorta
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:225: 120200-120200 被引量:7
标识
DOI:10.1016/j.applthermaleng.2023.120200
摘要

Since greenhouse gas emissions and freshwater scarcity are the top global risks, looking for new methods to reduce CO2 emissions and increase drinking water production is becoming a significant civilization challenge. One of the promising approaches to addressing these dares has proven to be adsorption cooling and desalination systems powered with low-grade thermal energy, including waste heat of the near ambient temperature. Due to poor heat and mass transfer and the low performance of the existing adsorption chiller with conventional packed beds, the innovative concept of fluidized beds application was elaborated on in the paper. Furthermore, the article introduces a novel approach based on artificial intelligence methods for predicting heat and mass transfer within the adsorption bed of cooling and desalination systems. Silica gel, as the parent adsorption material, and two additives, aluminium and carbon nanotubes, with different shares, are applied in tests. The water vapour uptake and the convective heat transfer coefficient, measured during experiments and predicted by the developed models, are investigated and compared. The data evaluated by models are in good agreement with experimental results. The developed models allow the study of input parameters' effect on the outputs and optimize the operating strategy of the bed. The highest water vapour uptake and the convective heat transfer coefficient, which can be obtained for the considered range of input parameters, are equal to 1.65 g/g and 1212.62 W/m2 K, respectively, and can be achieved only due to the fluidization of the adsorption bed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到 ,获得积分10
1秒前
范白容发布了新的文献求助10
2秒前
暖落完成签到,获得积分10
2秒前
满意的嚣完成签到 ,获得积分10
3秒前
survivor1320完成签到,获得积分20
4秒前
4秒前
4秒前
hottest完成签到,获得积分20
5秒前
BowieHuang应助素心采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Nuclear发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
庞利伟发布了新的文献求助10
5秒前
ding应助xiuwen采纳,获得10
6秒前
vgqp发布了新的文献求助10
6秒前
6秒前
wang完成签到,获得积分10
7秒前
7秒前
mengtingmei应助cherry采纳,获得10
7秒前
8秒前
旧是完成签到 ,获得积分10
8秒前
8秒前
8秒前
10秒前
童童完成签到,获得积分10
10秒前
涳域完成签到,获得积分10
10秒前
一汪完成签到,获得积分10
10秒前
11秒前
Jasper应助小太阳采纳,获得10
12秒前
呆萌成协发布了新的文献求助30
12秒前
灵灵发布了新的文献求助30
12秒前
梦丽有人发布了新的文献求助10
12秒前
游云发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
高晨焜发布了新的文献求助10
14秒前
JIAO完成签到,获得积分10
14秒前
在水一方应助哈哈哈哈哈采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709599
求助须知:如何正确求助?哪些是违规求助? 5195670
关于积分的说明 15257552
捐赠科研通 4862316
什么是DOI,文献DOI怎么找? 2610036
邀请新用户注册赠送积分活动 1560401
关于科研通互助平台的介绍 1518089