Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach

冷冻机 海水淡化 传质 材料科学 工艺工程 吸附 环境科学 传热 流态化 水冷 传热系数 传质系数 余热 水蒸气 温室气体 流化床 废物管理 环境工程 热力学 热交换器 机械工程 气象学 工程类 化学 物理 生物 有机化学 生物化学 生态学
作者
Jarosław Krzywański,Dorian Skrobek,Anna Żyłka,Karolina Grabowska,Anna Kulakowska,Marcin Sosnowski,W. Nowak,Ana M. Blanco-Marigorta
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:225: 120200-120200 被引量:7
标识
DOI:10.1016/j.applthermaleng.2023.120200
摘要

Since greenhouse gas emissions and freshwater scarcity are the top global risks, looking for new methods to reduce CO2 emissions and increase drinking water production is becoming a significant civilization challenge. One of the promising approaches to addressing these dares has proven to be adsorption cooling and desalination systems powered with low-grade thermal energy, including waste heat of the near ambient temperature. Due to poor heat and mass transfer and the low performance of the existing adsorption chiller with conventional packed beds, the innovative concept of fluidized beds application was elaborated on in the paper. Furthermore, the article introduces a novel approach based on artificial intelligence methods for predicting heat and mass transfer within the adsorption bed of cooling and desalination systems. Silica gel, as the parent adsorption material, and two additives, aluminium and carbon nanotubes, with different shares, are applied in tests. The water vapour uptake and the convective heat transfer coefficient, measured during experiments and predicted by the developed models, are investigated and compared. The data evaluated by models are in good agreement with experimental results. The developed models allow the study of input parameters' effect on the outputs and optimize the operating strategy of the bed. The highest water vapour uptake and the convective heat transfer coefficient, which can be obtained for the considered range of input parameters, are equal to 1.65 g/g and 1212.62 W/m2 K, respectively, and can be achieved only due to the fluidization of the adsorption bed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
不必要再讨论适合与否完成签到,获得积分0
1秒前
无情夏寒完成签到 ,获得积分10
2秒前
慕青应助马士全采纳,获得10
3秒前
xuzj应助科研通管家采纳,获得10
3秒前
Rubby应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
shiizii应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
ludong_0应助科研通管家采纳,获得10
4秒前
YeeYee发布了新的文献求助10
4秒前
冷酷的松思完成签到,获得积分10
4秒前
zgt01发布了新的文献求助10
5秒前
zhang完成签到,获得积分10
5秒前
江中完成签到 ,获得积分10
7秒前
7秒前
阿玖完成签到 ,获得积分10
8秒前
jiaolulu发布了新的文献求助10
10秒前
踏雪飞鸿完成签到,获得积分10
11秒前
hannah完成签到,获得积分10
11秒前
songvv发布了新的文献求助10
12秒前
一一一应助Bin_Liu采纳,获得10
13秒前
麻果完成签到,获得积分10
15秒前
OER完成签到,获得积分10
15秒前
伦语完成签到,获得积分20
15秒前
中陆完成签到,获得积分10
16秒前
17秒前
莫西莫西完成签到,获得积分10
19秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
xjh完成签到,获得积分10
22秒前
22秒前
lbnzd8g完成签到,获得积分10
24秒前
中海完成签到,获得积分10
24秒前
Ww完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022