Heat and mass transfer prediction in fluidized beds of cooling and desalination systems by AI approach

冷冻机 海水淡化 传质 材料科学 工艺工程 吸附 环境科学 传热 流态化 水冷 传热系数 传质系数 余热 水蒸气 温室气体 流化床 废物管理 环境工程 热力学 热交换器 机械工程 气象学 工程类 化学 物理 生物 有机化学 生物化学 生态学
作者
Jarosław Krzywański,Dorian Skrobek,Anna Żyłka,Karolina Grabowska,Anna Kulakowska,Marcin Sosnowski,W. Nowak,Ana M. Blanco-Marigorta
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:225: 120200-120200 被引量:7
标识
DOI:10.1016/j.applthermaleng.2023.120200
摘要

Since greenhouse gas emissions and freshwater scarcity are the top global risks, looking for new methods to reduce CO2 emissions and increase drinking water production is becoming a significant civilization challenge. One of the promising approaches to addressing these dares has proven to be adsorption cooling and desalination systems powered with low-grade thermal energy, including waste heat of the near ambient temperature. Due to poor heat and mass transfer and the low performance of the existing adsorption chiller with conventional packed beds, the innovative concept of fluidized beds application was elaborated on in the paper. Furthermore, the article introduces a novel approach based on artificial intelligence methods for predicting heat and mass transfer within the adsorption bed of cooling and desalination systems. Silica gel, as the parent adsorption material, and two additives, aluminium and carbon nanotubes, with different shares, are applied in tests. The water vapour uptake and the convective heat transfer coefficient, measured during experiments and predicted by the developed models, are investigated and compared. The data evaluated by models are in good agreement with experimental results. The developed models allow the study of input parameters' effect on the outputs and optimize the operating strategy of the bed. The highest water vapour uptake and the convective heat transfer coefficient, which can be obtained for the considered range of input parameters, are equal to 1.65 g/g and 1212.62 W/m2 K, respectively, and can be achieved only due to the fluidization of the adsorption bed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助王星星采纳,获得10
1秒前
油菜的星星完成签到,获得积分10
1秒前
2秒前
halabouqii完成签到,获得积分10
2秒前
李爱国应助满意采纳,获得10
3秒前
安然无恙应助平常的紫蓝采纳,获得10
3秒前
Inory007发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
zhan20200503完成签到,获得积分10
8秒前
这个文献你有么完成签到,获得积分10
9秒前
小二郎应助lan采纳,获得10
9秒前
李颜龙完成签到,获得积分10
11秒前
liangye2222发布了新的文献求助10
11秒前
与山发布了新的文献求助10
12秒前
12秒前
高手如林完成签到,获得积分10
13秒前
高铭泽完成签到,获得积分20
13秒前
Hengjian_Pu完成签到,获得积分10
13秒前
友好胜完成签到 ,获得积分10
13秒前
坦率白萱发布了新的文献求助10
14秒前
方翔应助林白采纳,获得100
14秒前
量子星尘发布了新的文献求助10
14秒前
Vresty完成签到,获得积分10
16秒前
糯米团的完成签到 ,获得积分10
18秒前
18秒前
Yunsong发布了新的文献求助10
18秒前
黑猫完成签到,获得积分20
19秒前
热心市民小红花应助千余采纳,获得10
20秒前
20秒前
21秒前
lan完成签到,获得积分10
21秒前
火星上念梦发布了新的文献求助150
21秒前
Enckson完成签到,获得积分10
22秒前
火星上的羽毛完成签到,获得积分10
23秒前
留留完成签到,获得积分10
24秒前
lan发布了新的文献求助10
24秒前
我爱金哥发布了新的文献求助10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035