亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting dissolved oxygen level using Young's double-slit experiment optimizer-based weighting model

加权 人工神经网络 平均绝对百分比误差 计算机科学 人工智能 平均绝对误差 a计权 机器学习 统计 数据挖掘 均方误差 数学 医学 放射科
作者
Ying Dong,Yongkui Sun,Zhenkun Liu,Zhiyuan Du,Jianzhou Wang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:351: 119807-119807 被引量:5
标识
DOI:10.1016/j.jenvman.2023.119807
摘要

Accurate prediction of the dissolved oxygen level (DOL) is important for enhancing environmental conditions and facilitating water resource management. However, the irregularity and volatility inherent in DOL pose significant challenges to achieving precise forecasts. A single model usually suffers from low prediction accuracy, narrow application range, and difficult data acquisition. This study proposes a new weighted model that avoids these problems, which could increase the prediction accuracy of the DOL. The weighting constructs of the proposed model (PWM) included eight neural networks and one statistical method and utilized Young's double-slit experimental optimizer as an intelligent weighting tool. To evaluate the effectiveness of PWM, simulations were conducted using real-world data acquired from the Tualatin River Basin in Oregon, United States. Empirical findings unequivocally demonstrated that PWM outperforms both the statistical model and the individual machine learning models, and has the lowest mean absolute percentage error among all the weighted models. Based on two real datasets, the PWM can averagely obtain the mean absolute percentage errors of 1.0216%, 1.4630%, and 1.7087% for one-, two-, and three-step predictions, respectively. This study shows that the PWM can effectively integrate the distinctive merits of deep learning methods, neural networks, and statistical models, thereby increasing forecasting accuracy and providing indispensable technical support for the sustainable development of regional water environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lt完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
KINGAZX发布了新的文献求助10
2分钟前
3分钟前
纯真的柔发布了新的文献求助10
3分钟前
科研通AI6应助纯真的柔采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
BowieHuang应助阿里采纳,获得10
3分钟前
4分钟前
令狐凝阳发布了新的文献求助10
4分钟前
4分钟前
RC发布了新的文献求助10
5分钟前
CR7应助令狐凝阳采纳,获得20
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
李爱国应助npknpk采纳,获得10
5分钟前
6分钟前
6分钟前
ding应助陈文学采纳,获得10
6分钟前
6分钟前
7分钟前
无风风给无风风的求助进行了留言
7分钟前
npknpk发布了新的文献求助10
7分钟前
7分钟前
npknpk完成签到,获得积分10
7分钟前
隐形曼青应助长情洙采纳,获得10
7分钟前
FashionBoy应助科研通管家采纳,获得30
7分钟前
ccc完成签到 ,获得积分10
7分钟前
BowieHuang应助jing采纳,获得10
7分钟前
8分钟前
111完成签到 ,获得积分10
8分钟前
8分钟前
bubble完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590542
求助须知:如何正确求助?哪些是违规求助? 4674809
关于积分的说明 14795346
捐赠科研通 4633096
什么是DOI,文献DOI怎么找? 2532808
邀请新用户注册赠送积分活动 1501315
关于科研通互助平台的介绍 1468707