Data Deserts and Black Boxes: The Impact of Socio-Economic Status on Consumer Profiling

仿形(计算机编程) 社会经济地位 经济影响分析 地理 经济 区域科学 数据科学 社会学 计算机科学 人口学 人口 微观经济学 操作系统
作者
Nico Neumann,Catherine E. Tucker,Levi Kaplan,Alan Mislove,Piotr Sapieżyński
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (11): 8003-8029 被引量:4
标识
DOI:10.1287/mnsc.2023.4979
摘要

Data brokers use black-box methods to profile and segment individuals for ad targeting, often with mixed success. We present evidence from 5 complementary field tests and 15 data brokers that differences in profiling accuracy and coverage for these attributes mainly depend on who is being profiled. Consumers who are better off—for example, those with higher incomes or living in affluent areas—are both more likely to be profiled and more likely to be profiled accurately. Occupational status (white-collar versus blue-collar jobs), race and ethnicity, gender, and household arrangements often affect the accuracy and likelihood of having profile information available, although this varies by country and whether we consider online or offline coverage of profile attributes. Our analyses suggest that successful consumer-background profiling can be linked to the scope of an individual’s digital footprint from how much time they spend online and the number of digital devices they own. Those who come from lower-income backgrounds have a narrower digital footprint, leading to a “data desert” for such individuals. Vendor characteristics, including differences in profiling methods, explain virtually none of the variation in profiling accuracy for our data, but explain variation in the likelihood of who is profiled. Vendor differences due to unique networks and partnerships also affect profiling outcomes indirectly due to differential access to individuals with different backgrounds. We discuss the implications of our findings for policy and marketing practice. This paper was accepted by David Simchi-Levi, marketing. Funding: Financial support from the National Science Foundation [CAREER Award 6923256] and an anonymous panel company is gratefully acknowledged. Supplemental Material: The web appendix and data files are available at https://doi.org/10.1287/mnsc.2023.4979 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
4秒前
苦逼的科研人完成签到,获得积分10
6秒前
Nolan发布了新的文献求助30
6秒前
只有辣椒没有油完成签到 ,获得积分10
6秒前
7秒前
SHENJING发布了新的文献求助10
10秒前
10秒前
科研通AI2S应助Xdxiaoying采纳,获得10
11秒前
科研通AI2S应助笑点低天德采纳,获得10
11秒前
莫莫发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
小朱完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
YANG应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
满意的仙人掌完成签到 ,获得积分10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
悠夏sunny完成签到,获得积分10
17秒前
852应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212203
求助须知:如何正确求助?哪些是违规求助? 2861086
关于积分的说明 8127255
捐赠科研通 2526986
什么是DOI,文献DOI怎么找? 1360640
科研通“疑难数据库(出版商)”最低求助积分说明 643289
邀请新用户注册赠送积分活动 615619