A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622 被引量:22
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xdas发布了新的文献求助30
刚刚
bkagyin应助美好的慕青采纳,获得10
1秒前
小龚发布了新的文献求助10
1秒前
科研通AI6.1应助xi采纳,获得10
1秒前
小平完成签到,获得积分10
1秒前
momo发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助傻傻的寻琴采纳,获得10
1秒前
1秒前
1秒前
科研通AI6.1应助dara997采纳,获得10
2秒前
jiangnan完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
青木关注了科研通微信公众号
2秒前
Ava应助123...采纳,获得30
2秒前
阳阳发布了新的文献求助10
3秒前
顾矜应助优秀尔芙采纳,获得10
3秒前
太叔文博完成签到,获得积分10
3秒前
Farew完成签到,获得积分10
4秒前
研友_n0gowL完成签到,获得积分10
4秒前
4秒前
KIKO发布了新的文献求助10
4秒前
晚风发布了新的文献求助10
5秒前
彭于晏应助中国美味蘑菇采纳,获得10
5秒前
古娜拉黑暗之女神完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
高高断秋完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助小平采纳,获得10
7秒前
chensd发布了新的文献求助20
7秒前
李健的小迷弟应助超超采纳,获得10
7秒前
完美世界应助123456采纳,获得10
7秒前
8秒前
CY发布了新的文献求助10
8秒前
eric888应助lan采纳,获得200
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410