A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622 被引量:22
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ting完成签到 ,获得积分10
刚刚
刚刚
徐恺完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Jasper应助欢呼豆芽采纳,获得10
1秒前
2秒前
所所应助善良的ltl采纳,获得10
3秒前
shenerqing发布了新的文献求助10
3秒前
小杜发布了新的文献求助10
3秒前
3秒前
xueshu发布了新的文献求助10
3秒前
风住的街完成签到,获得积分10
3秒前
难过板栗发布了新的文献求助10
3秒前
666发布了新的文献求助10
3秒前
4秒前
薇子完成签到,获得积分10
4秒前
4秒前
4秒前
情怀应助能干耳机采纳,获得10
5秒前
CodeCraft应助wyiii采纳,获得10
5秒前
dd完成签到,获得积分10
5秒前
晏之傲者发布了新的文献求助30
5秒前
5秒前
Hina完成签到,获得积分10
5秒前
6秒前
6秒前
JokerCing完成签到,获得积分10
6秒前
wkjfh应助1111111111111采纳,获得10
6秒前
山水完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
ytnju发布了新的文献求助10
8秒前
林非鹿发布了新的文献求助10
9秒前
orixero应助天空之城采纳,获得10
9秒前
璇璇完成签到,获得积分10
9秒前
hr发布了新的文献求助10
9秒前
浮游应助Lx采纳,获得10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401