A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107622-107622
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蟋蟀狂舞发布了新的文献求助10
1秒前
shelley完成签到,获得积分10
4秒前
冷艳小刺猬完成签到 ,获得积分10
5秒前
7秒前
搜集达人应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得30
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
11秒前
700w完成签到 ,获得积分10
12秒前
寂寞的诗云完成签到,获得积分10
12秒前
scfsl完成签到,获得积分10
12秒前
13秒前
幸福大白发布了新的文献求助10
13秒前
sijin1216完成签到,获得积分10
13秒前
小高发布了新的文献求助10
14秒前
歪比巴卜发布了新的文献求助10
15秒前
15秒前
16秒前
OKOK发布了新的文献求助10
16秒前
内向忆南发布了新的文献求助30
20秒前
21秒前
NexusExplorer应助花花采纳,获得10
22秒前
我是老大应助OKOK采纳,获得10
22秒前
deallyxyz应助goofs采纳,获得200
23秒前
24秒前
24秒前
木偶完成签到 ,获得积分10
25秒前
twob发布了新的文献求助10
25秒前
26秒前
泡泡糖发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702