A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622 被引量:22
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
678完成签到,获得积分10
刚刚
羊羊完成签到,获得积分20
刚刚
刚刚
温柔凌晴完成签到,获得积分10
刚刚
asd发布了新的文献求助30
刚刚
科研dog完成签到,获得积分10
刚刚
池鱼发布了新的文献求助30
1秒前
酷波er应助guangshuang采纳,获得10
2秒前
3秒前
morena发布了新的文献求助10
3秒前
东石头发布了新的文献求助10
3秒前
阔达雪碧发布了新的文献求助10
4秒前
上官若男应助ShenQ采纳,获得10
4秒前
4秒前
科研小菜鸡完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
1233发布了新的文献求助20
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
hua完成签到,获得积分10
7秒前
天真雁梅完成签到 ,获得积分10
8秒前
大模型应助个性的冰颜采纳,获得10
8秒前
bkagyin应助ZM采纳,获得10
8秒前
郭梦娇发布了新的文献求助10
9秒前
10秒前
科研通AI6应助冰水混合物采纳,获得10
11秒前
隐形曼青应助八二力采纳,获得10
11秒前
12秒前
13秒前
13秒前
shar2完成签到,获得积分10
14秒前
无辜紫菜完成签到,获得积分10
14秒前
算命先生发布了新的文献求助10
15秒前
15秒前
睡个大觉完成签到,获得积分10
16秒前
周勇峰完成签到,获得积分20
17秒前
Lucas应助小兔子乖乖采纳,获得30
17秒前
研友_85rJEL完成签到 ,获得积分10
17秒前
科研通AI6应助超帅的冷菱采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656240
求助须知:如何正确求助?哪些是违规求助? 4802386
关于积分的说明 15075189
捐赠科研通 4814529
什么是DOI,文献DOI怎么找? 2575798
邀请新用户注册赠送积分活动 1531163
关于科研通互助平台的介绍 1489741