A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:129: 107622-107622
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin琳发布了新的文献求助10
1秒前
闪闪的屁股完成签到,获得积分10
2秒前
3秒前
4秒前
12345发布了新的文献求助10
5秒前
5秒前
KingYugene发布了新的文献求助10
6秒前
sigmund完成签到,获得积分20
7秒前
7秒前
乐乐应助遇疯儿采纳,获得10
8秒前
8秒前
9秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
9秒前
浮游应助红糖小糍粑采纳,获得10
9秒前
Criminology34应助红糖小糍粑采纳,获得10
9秒前
10秒前
要减肥的半山完成签到,获得积分10
10秒前
11秒前
Lin琳完成签到,获得积分20
12秒前
文静发布了新的文献求助10
12秒前
小小超发布了新的文献求助10
12秒前
艾米尼发布了新的文献求助10
12秒前
KingYugene完成签到,获得积分10
13秒前
慕青应助hahaagain采纳,获得10
13秒前
14秒前
小二郎应助无奈的鞋子采纳,获得10
14秒前
yuanyuan完成签到,获得积分10
15秒前
科研通AI6应助Hh采纳,获得10
15秒前
浮游应助鹤九采纳,获得10
15秒前
16秒前
16秒前
文静完成签到,获得积分10
16秒前
小王发布了新的文献求助10
17秒前
17秒前
斯文绝音完成签到,获得积分10
17秒前
ddrose发布了新的文献求助10
19秒前
更明发布了新的文献求助10
20秒前
21秒前
KSung完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978174
求助须知:如何正确求助?哪些是违规求助? 4231199
关于积分的说明 13178705
捐赠科研通 4021946
什么是DOI,文献DOI怎么找? 2200483
邀请新用户注册赠送积分活动 1212958
关于科研通互助平台的介绍 1129258