A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
1秒前
fenghp发布了新的文献求助10
1秒前
CYYDNDB发布了新的文献求助10
2秒前
why应助坚定的磬采纳,获得10
2秒前
仁爱的寻凝完成签到,获得积分10
2秒前
歪歪发布了新的文献求助10
3秒前
孙皓然完成签到 ,获得积分10
3秒前
CHINA76发布了新的文献求助10
3秒前
5秒前
浮游应助minya采纳,获得10
6秒前
7秒前
Orange应助fenghp采纳,获得10
7秒前
8秒前
湘南应助Arctic采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
走四方发布了新的文献求助10
10秒前
11秒前
11秒前
哈ihfh发布了新的文献求助10
11秒前
快乐的蓝发布了新的文献求助30
12秒前
cz发布了新的文献求助10
13秒前
君君发布了新的文献求助10
13秒前
Lee发布了新的文献求助10
14秒前
田田应助XX采纳,获得10
14秒前
14秒前
16秒前
19秒前
19秒前
善学以致用应助CHINA76采纳,获得10
19秒前
20秒前
20秒前
20秒前
Lucas应助大梦想家采纳,获得10
22秒前
farmeryxt完成签到,获得积分10
23秒前
23秒前
turui完成签到 ,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308721
求助须知:如何正确求助?哪些是违规求助? 4453758
关于积分的说明 13858004
捐赠科研通 4341502
什么是DOI,文献DOI怎么找? 2383910
邀请新用户注册赠送积分活动 1378541
关于科研通互助平台的介绍 1346541