A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622 被引量:22
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助内卷与外包采纳,获得10
5秒前
阿屁屁猪完成签到,获得积分10
5秒前
黄大完成签到,获得积分10
5秒前
冬冬完成签到,获得积分10
6秒前
hhhhhhhh发布了新的文献求助10
6秒前
7秒前
duoduo7发布了新的文献求助10
7秒前
Mic发布了新的文献求助10
7秒前
黑马王子发布了新的文献求助10
8秒前
10秒前
12秒前
tutou发布了新的文献求助10
14秒前
惊艳发布了新的文献求助20
14秒前
共享精神应助迷路的台灯采纳,获得10
14秒前
15秒前
烦恼全吴完成签到 ,获得积分10
15秒前
EnjieLin完成签到,获得积分10
15秒前
16秒前
Mic完成签到,获得积分10
17秒前
超级翰完成签到 ,获得积分10
17秒前
科研通AI2S应助sc采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
shuxi完成签到,获得积分10
19秒前
稳重晓亦完成签到,获得积分10
20秒前
wxyshare应助wv采纳,获得10
21秒前
zyx完成签到,获得积分10
22秒前
wsc应助无情南琴采纳,获得20
22秒前
23秒前
24秒前
斯文败类应助水下月采纳,获得10
24秒前
FashionBoy应助无聊采纳,获得10
24秒前
FashionBoy应助琳io采纳,获得10
24秒前
24秒前
科研通AI6应助duoduo7采纳,获得10
24秒前
虚拟的雪枫完成签到 ,获得积分10
26秒前
科研通AI6应助tutou采纳,获得10
26秒前
临亦完成签到 ,获得积分10
27秒前
搞点学术发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003