已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622 被引量:22
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
温婉的凝芙完成签到 ,获得积分10
1秒前
yqt完成签到,获得积分10
2秒前
xie完成签到 ,获得积分10
2秒前
17发布了新的文献求助10
3秒前
3秒前
诺贝尔候选人完成签到 ,获得积分10
4秒前
着急的猴完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
浮浮世世发布了新的文献求助60
8秒前
C_Cppp发布了新的文献求助10
9秒前
英勇羿发布了新的文献求助10
9秒前
Afliea发布了新的文献求助10
11秒前
14秒前
C_Cppp完成签到,获得积分10
15秒前
思源应助细心盼晴采纳,获得10
15秒前
18秒前
hh发布了新的文献求助10
19秒前
19秒前
充电宝应助虚心碧采纳,获得10
20秒前
20秒前
dyw发布了新的文献求助10
22秒前
22秒前
Wu完成签到,获得积分10
22秒前
科研通AI6应助听话的幼蓉采纳,获得30
23秒前
丘比特应助大宝君采纳,获得30
24秒前
24秒前
Wu发布了新的文献求助10
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
28秒前
28秒前
29秒前
云间倚山水完成签到,获得积分10
30秒前
虚心碧发布了新的文献求助10
30秒前
osel完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616958
求助须知:如何正确求助?哪些是违规求助? 4701288
关于积分的说明 14913198
捐赠科研通 4746999
什么是DOI,文献DOI怎么找? 2549134
邀请新用户注册赠送积分活动 1512284
关于科研通互助平台的介绍 1474049