A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 哲学 操作系统 程序设计语言 认识论 语言学 几何学
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助没事哒采纳,获得10
2秒前
iwsaml发布了新的文献求助10
2秒前
任性的岱周完成签到,获得积分10
3秒前
小熊完成签到,获得积分10
3秒前
柒月发布了新的文献求助10
4秒前
鲤鱼依白完成签到 ,获得积分10
4秒前
小二郎应助随波逐流采纳,获得10
5秒前
sissi应助luckygirl采纳,获得10
5秒前
11秒前
11秒前
cwm完成签到,获得积分10
14秒前
xinghe完成签到,获得积分10
15秒前
善学以致用应助MUAL采纳,获得10
15秒前
miselling发布了新的文献求助10
16秒前
17秒前
xinghe发布了新的文献求助10
18秒前
18秒前
光亮小笼包完成签到 ,获得积分10
18秒前
子车破茧发布了新的文献求助10
19秒前
陈功完成签到,获得积分10
20秒前
离异带娃完成签到 ,获得积分10
22秒前
执着发布了新的文献求助10
23秒前
带象发布了新的文献求助10
23秒前
心已死何来心完成签到,获得积分10
24秒前
24秒前
Tttttttt完成签到,获得积分10
26秒前
hang完成签到,获得积分10
26秒前
你要学好完成签到 ,获得积分10
27秒前
27秒前
清风完成签到,获得积分10
27秒前
28秒前
xiaotaiyang发布了新的文献求助10
29秒前
小蘑菇应助huihui采纳,获得10
29秒前
子健完成签到,获得积分10
29秒前
西瓜霜完成签到 ,获得积分10
29秒前
ElbingX发布了新的文献求助30
30秒前
摆烂小土豆完成签到 ,获得积分10
30秒前
SciGPT应助xinghe采纳,获得10
30秒前
范先生发布了新的文献求助10
32秒前
MUAL发布了新的文献求助10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175