亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel software defect prediction approach via weighted classification based on association rule mining

计算机科学 关联规则学习 数据挖掘 特征选择 班级(哲学) 特征(语言学) 粒度 软件 人工智能 机器学习 相互信息 联想(心理学) 相关性 过程(计算) 相关系数 数学 语言学 哲学 几何学 认识论 程序设计语言 操作系统
作者
Wentao Wu,Shihai Wang,Bin Liu,Yuanxun Shao,Wandong Xie
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107622-107622 被引量:22
标识
DOI:10.1016/j.engappai.2023.107622
摘要

Software defect prediction technology is used to assist software practitioners in effectively allocating test resources and identifying hidden defects in a timely manner. However, the prediction of defect-prone software using association rule mining algorithms is limited because of the unbalanced distribution of defect data. Furthermore, although the existing weighted association rule mining approach considers item strength, the weight calculation still relies on expert experience and lacks fine granularity. We propose a novel software defect prediction approach based on mutual information and correlation coefficient weighted class association rule mining (MCWCAR). The MCWCAR model employs a cost-sensitive strategy and generates frequent itemsets according to three mining objectives while maintaining the original item distribution: defective class rules, non-defective class rules, and feature association relationships. During the weighted frequent itemset mining process, it combines feature selection and itemset screening to determine the appropriate feature combination through mutual information weighted support. Meanwhile, the correlation coefficient is applied to accurately depict the correlation between feature items and defect classes, serving as the weight to mine class association rules. Additionally, to ensure that interestingness measures have asymmetry and effectively represent negative associations under the condition of class imbalance, the added value is adopted in the filtering association rules. We conducted experiments on 27 open-source datasets and evaluated the performance differences between MCWCAR and state-of-the-art baseline classifiers. Experimental results demonstrate that the proposed algorithm significantly outperforms other baselines in terms of Balance, Gmean, MCC, and F-measure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
洞两完成签到,获得积分10
9秒前
14秒前
15秒前
16秒前
17秒前
luster完成签到 ,获得积分10
18秒前
19秒前
yyds发布了新的文献求助20
20秒前
good猫妮完成签到,获得积分20
20秒前
飘逸焱完成签到 ,获得积分10
21秒前
范特西完成签到 ,获得积分10
24秒前
momo发布了新的文献求助10
24秒前
vio完成签到,获得积分10
27秒前
万能的悲剧完成签到 ,获得积分10
35秒前
36秒前
yyds完成签到,获得积分10
42秒前
44秒前
49秒前
一粟完成签到 ,获得积分10
51秒前
梨凉完成签到,获得积分10
51秒前
舟君儒完成签到,获得积分10
57秒前
ChloeD完成签到,获得积分10
57秒前
wtian完成签到,获得积分10
59秒前
奋斗的绝悟完成签到,获得积分10
1分钟前
1分钟前
科研小牛完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
柯语雪发布了新的文献求助10
1分钟前
从容惊蛰发布了新的文献求助10
1分钟前
1分钟前
1分钟前
归尘应助遇见馅儿饼采纳,获得10
1分钟前
潇洒洙发布了新的文献求助20
1分钟前
1分钟前
1分钟前
梨子完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476231
求助须知:如何正确求助?哪些是违规求助? 4577910
关于积分的说明 14363115
捐赠科研通 4505792
什么是DOI,文献DOI怎么找? 2468878
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126