亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MonoVAN: Visual Attention for Self-Supervised Monocular Depth Estimation

单眼 计算机科学 人工智能 估计 计算机视觉 工程类 系统工程
作者
Ilia Indyk,Ilya Makarov
标识
DOI:10.1109/ismar59233.2023.00138
摘要

Depth estimation is crucial in various computer vision applications, including autonomous driving, robotics, and virtual and augmented reality. An accurate scene depth map is beneficial for localization, spatial registration, and tracking. It converts 2D images into precise 3D coordinates for accurate positioning, seamlessly aligns virtual and real objects in applications like AR, and enhances object tracking by distinguishing distances. The self-supervised monocular approach is particularly promising as it eliminates the need for complex and expensive data acquisition setups relying solely on a standard RGB camera. Recently, transformer-based architectures have become popular to solve this problem, but at high quality, they suffer from high computational cost and poor perception of small details as they focus more on global information. In this paper, we propose a novel fully convolutional network for monocular depth estimation, called MonoVAN, which incorporates the visual attention mechanism and applies super-resolution techniques in decoder to better capture fine-grained details in depth maps. To the best of our knowledge, this work pioneers the use of a convolutional visual attention in the context of depth estimation. Our experiments on outdoor KITTI benchmark and the indoor NYUv2 dataset show that our approach outperforms the most advanced self-supervised methods, including such state-of-the-art models as transformer-based VTDepth from ISMAR'22 and hybrid convolutional-transformer MonoFormer from AAAI'23, while having a comparable or even fewer number of parameters in our model than competitors. We also validate the impact of each proposed improvement in isolation, providing evidence of its significant contribution. Code and weights are available at https://github.com/IlyaInd/MonoVAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
量子星尘发布了新的文献求助10
9秒前
13秒前
ljc完成签到 ,获得积分10
18秒前
Dannnn发布了新的文献求助10
21秒前
大个应助啾啾采纳,获得10
26秒前
30秒前
31秒前
Henry完成签到,获得积分10
34秒前
月亮与六便士完成签到,获得积分10
38秒前
顾矜应助zzx采纳,获得10
39秒前
Suraim完成签到,获得积分10
44秒前
天使她男人完成签到,获得积分10
52秒前
54秒前
祁曼岚发布了新的文献求助10
1分钟前
科研通AI5应助Criminology34采纳,获得300
1分钟前
xiuxiuzhang完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助Nowind采纳,获得10
1分钟前
1分钟前
1分钟前
zzx发布了新的文献求助10
1分钟前
祁曼岚完成签到,获得积分10
1分钟前
yehata发布了新的文献求助10
1分钟前
22222发布了新的文献求助10
1分钟前
小胡爱科研完成签到 ,获得积分10
1分钟前
1分钟前
852应助yehata采纳,获得10
1分钟前
1分钟前
cqhecq完成签到,获得积分10
1分钟前
1分钟前
侯松发布了新的文献求助10
1分钟前
ymt完成签到,获得积分20
1分钟前
1分钟前
llllliu完成签到,获得积分10
1分钟前
ymt发布了新的文献求助10
1分钟前
侯松完成签到,获得积分10
1分钟前
布莱克鸭给布莱克鸭的求助进行了留言
1分钟前
jarenthar完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063706
求助须知:如何正确求助?哪些是违规求助? 4287148
关于积分的说明 13358465
捐赠科研通 4105281
什么是DOI,文献DOI怎么找? 2247917
邀请新用户注册赠送积分活动 1253488
关于科研通互助平台的介绍 1184591