An approach based on deep learning methods to detect the condition of solar panels in solar power plants

太阳能 功率(物理) 计算机科学 光伏系统 人工智能 工程类 环境科学 航空航天工程 电气工程 物理 量子力学
作者
Tolga Özer,Ömer S. Türkmen
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:116: 109143-109143 被引量:3
标识
DOI:10.1016/j.compeleceng.2024.109143
摘要

Solar panels are increasingly popular due to global energy shortages and rising costs. However, managing large or elevated panel systems requires regular oversight, leading to potential time and cost challenges. This study was focused on developing an AI-based drone for panel detection to address these issues and facilitate the control process. A low-cost system for AI-based identification of dusty, broken, and healthy solar panels was created using a Raspberry Pi 4B board and camera. The study proposed a Histogram Equalization (HE)-based preprocessing technique to improve the AI model. Firstly, the trainings were performed with YOLOv5 without the proposed method at epoch values of 100, 150, and 200 in order to see the effectiveness of the proposed method more clearly. As a result of these trainings, the highest F1 score was obtained as 80 %. In the second step, three deep learning algorithms - YOLOv5, YOLOv7, and YOLOv8 - with epochs of 100, 150, and 200 respectively, were used for training with the proposed method. A detailed comparative analysis of the developed models was carried out regarding their performance metrics. The YOLOv5l was obtained as the most successful panel detection model with an F1 score of 97 % at 150 epochs. The model with the best performance metrics was used in a real-time test application with an AI-based drone. F1 score results were obtained between 90 % and 97 %, mainly supporting the success rate obtained in real-time application. The results strongly support the effectiveness of this proposed method for panel detection tasks, showcasing its high efficacy and promising potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuangboXia完成签到,获得积分10
刚刚
星辰大海应助AA采纳,获得10
2秒前
上善若水呦完成签到 ,获得积分10
6秒前
完美世界应助栀初采纳,获得10
29秒前
39秒前
栀初发布了新的文献求助10
42秒前
beplayer1完成签到 ,获得积分10
44秒前
sirius完成签到 ,获得积分10
48秒前
48秒前
元谷雪应助出金多多采纳,获得10
52秒前
huangzsdy完成签到,获得积分10
53秒前
scitester完成签到,获得积分10
57秒前
飞翔的企鹅完成签到,获得积分10
1分钟前
沉默的冬寒完成签到 ,获得积分10
1分钟前
研友_LmgOaZ完成签到 ,获得积分0
1分钟前
1分钟前
海孩子完成签到,获得积分10
1分钟前
AA发布了新的文献求助10
1分钟前
杨一完成签到 ,获得积分10
1分钟前
cyskdsn完成签到 ,获得积分10
1分钟前
NexusExplorer应助AA采纳,获得10
1分钟前
mailgo完成签到,获得积分10
2分钟前
流星雨完成签到 ,获得积分10
2分钟前
Hank完成签到 ,获得积分10
2分钟前
huazhangchina完成签到 ,获得积分10
2分钟前
脑洞疼应助丽丽采纳,获得10
2分钟前
陆黑暗完成签到 ,获得积分10
2分钟前
绿色心情完成签到 ,获得积分10
2分钟前
三脸茫然完成签到 ,获得积分10
2分钟前
yinhe完成签到 ,获得积分10
2分钟前
年轻的醉冬完成签到 ,获得积分10
2分钟前
future完成签到 ,获得积分10
2分钟前
王kk完成签到 ,获得积分10
2分钟前
xue112完成签到 ,获得积分10
2分钟前
爱爱完成签到 ,获得积分10
2分钟前
NCS完成签到,获得积分10
2分钟前
雪莉完成签到 ,获得积分10
2分钟前
mrwang完成签到 ,获得积分10
2分钟前
执着夏山完成签到,获得积分10
2分钟前
lixinyue完成签到 ,获得积分10
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139630
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795445
捐赠科研通 2446977
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176