An approach based on deep learning methods to detect the condition of solar panels in solar power plants

太阳能 功率(物理) 计算机科学 光伏系统 人工智能 工程类 环境科学 航空航天工程 电气工程 物理 量子力学
作者
Tolga Özer,Ömer S. Türkmen
出处
期刊:Computers & Electrical Engineering [Elsevier]
卷期号:116: 109143-109143 被引量:3
标识
DOI:10.1016/j.compeleceng.2024.109143
摘要

Solar panels are increasingly popular due to global energy shortages and rising costs. However, managing large or elevated panel systems requires regular oversight, leading to potential time and cost challenges. This study was focused on developing an AI-based drone for panel detection to address these issues and facilitate the control process. A low-cost system for AI-based identification of dusty, broken, and healthy solar panels was created using a Raspberry Pi 4B board and camera. The study proposed a Histogram Equalization (HE)-based preprocessing technique to improve the AI model. Firstly, the trainings were performed with YOLOv5 without the proposed method at epoch values of 100, 150, and 200 in order to see the effectiveness of the proposed method more clearly. As a result of these trainings, the highest F1 score was obtained as 80 %. In the second step, three deep learning algorithms - YOLOv5, YOLOv7, and YOLOv8 - with epochs of 100, 150, and 200 respectively, were used for training with the proposed method. A detailed comparative analysis of the developed models was carried out regarding their performance metrics. The YOLOv5l was obtained as the most successful panel detection model with an F1 score of 97 % at 150 epochs. The model with the best performance metrics was used in a real-time test application with an AI-based drone. F1 score results were obtained between 90 % and 97 %, mainly supporting the success rate obtained in real-time application. The results strongly support the effectiveness of this proposed method for panel detection tasks, showcasing its high efficacy and promising potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yasong发布了新的文献求助10
1秒前
科研通AI6应助张小哥12采纳,获得10
1秒前
所所应助搞笑5次采纳,获得10
1秒前
SciGPT应助吸尘器采纳,获得10
1秒前
火星上的宝马完成签到,获得积分10
1秒前
醉林发布了新的文献求助10
1秒前
赘婿应助专注邴采纳,获得10
2秒前
夏千辰完成签到 ,获得积分10
2秒前
2秒前
烟花应助叼哥采纳,获得10
2秒前
纸农完成签到,获得积分10
2秒前
沉静诗蕊发布了新的文献求助10
2秒前
淡然钢笔完成签到,获得积分10
3秒前
zzk发布了新的文献求助10
3秒前
橙子发布了新的文献求助10
3秒前
3秒前
Akim应助圈圈采纳,获得10
4秒前
zy发布了新的文献求助10
4秒前
仇悦完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
FashionBoy应助kkx采纳,获得10
7秒前
尘埃完成签到,获得积分10
7秒前
8秒前
prj完成签到,获得积分10
8秒前
曹鑫宇发布了新的文献求助10
8秒前
Stella应助安静秋柔采纳,获得30
9秒前
Starain完成签到,获得积分10
9秒前
Lucas应助清脆如娆采纳,获得10
9秒前
wkh完成签到,获得积分10
9秒前
甜蜜绿柏完成签到,获得积分10
10秒前
华仔应助赵芳采纳,获得30
10秒前
充电宝应助火星上的宝马采纳,获得10
10秒前
饱满凝雁完成签到 ,获得积分10
10秒前
11秒前
Free发布了新的文献求助10
11秒前
科研通AI6应助幸福的依柔采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396402
求助须知:如何正确求助?哪些是违规求助? 4516808
关于积分的说明 14061325
捐赠科研通 4428678
什么是DOI,文献DOI怎么找? 2432127
邀请新用户注册赠送积分活动 1424444
关于科研通互助平台的介绍 1403588