清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An approach based on deep learning methods to detect the condition of solar panels in solar power plants

太阳能 功率(物理) 计算机科学 光伏系统 人工智能 工程类 环境科学 航空航天工程 电气工程 物理 量子力学
作者
Tolga Özer,Ömer S. Türkmen
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:116: 109143-109143 被引量:3
标识
DOI:10.1016/j.compeleceng.2024.109143
摘要

Solar panels are increasingly popular due to global energy shortages and rising costs. However, managing large or elevated panel systems requires regular oversight, leading to potential time and cost challenges. This study was focused on developing an AI-based drone for panel detection to address these issues and facilitate the control process. A low-cost system for AI-based identification of dusty, broken, and healthy solar panels was created using a Raspberry Pi 4B board and camera. The study proposed a Histogram Equalization (HE)-based preprocessing technique to improve the AI model. Firstly, the trainings were performed with YOLOv5 without the proposed method at epoch values of 100, 150, and 200 in order to see the effectiveness of the proposed method more clearly. As a result of these trainings, the highest F1 score was obtained as 80 %. In the second step, three deep learning algorithms - YOLOv5, YOLOv7, and YOLOv8 - with epochs of 100, 150, and 200 respectively, were used for training with the proposed method. A detailed comparative analysis of the developed models was carried out regarding their performance metrics. The YOLOv5l was obtained as the most successful panel detection model with an F1 score of 97 % at 150 epochs. The model with the best performance metrics was used in a real-time test application with an AI-based drone. F1 score results were obtained between 90 % and 97 %, mainly supporting the success rate obtained in real-time application. The results strongly support the effectiveness of this proposed method for panel detection tasks, showcasing its high efficacy and promising potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DALUDALU发布了新的文献求助10
34秒前
40秒前
满唐完成签到 ,获得积分10
47秒前
54秒前
GU完成签到,获得积分10
54秒前
GU发布了新的文献求助20
1分钟前
qq完成签到 ,获得积分10
1分钟前
清秀的怀蕊完成签到 ,获得积分0
1分钟前
1分钟前
ming123ah完成签到,获得积分10
1分钟前
1分钟前
1分钟前
北极企鹅发布了新的文献求助10
1分钟前
zhangyx完成签到 ,获得积分10
2分钟前
CC完成签到,获得积分10
2分钟前
2分钟前
娟娟加油完成签到 ,获得积分10
3分钟前
lod完成签到,获得积分10
3分钟前
清秀的之桃完成签到 ,获得积分10
3分钟前
英喆完成签到 ,获得积分10
4分钟前
呆呆的猕猴桃完成签到 ,获得积分10
4分钟前
阿尔法贝塔完成签到 ,获得积分10
4分钟前
子凡应助雪山飞龙采纳,获得10
4分钟前
小白菜完成签到 ,获得积分10
4分钟前
zyp完成签到,获得积分10
4分钟前
子凡应助雪山飞龙采纳,获得10
4分钟前
1250241652完成签到,获得积分10
4分钟前
张占完成签到,获得积分10
4分钟前
laber完成签到,获得积分10
4分钟前
子凡应助雪山飞龙采纳,获得10
4分钟前
科研通AI2S应助雪山飞龙采纳,获得10
4分钟前
4分钟前
yellowonion完成签到 ,获得积分10
4分钟前
4分钟前
雪山飞龙完成签到,获得积分10
4分钟前
George完成签到,获得积分10
5分钟前
星辰大海应助兴奋的嘉懿采纳,获得10
5分钟前
陈月婷完成签到 ,获得积分10
5分钟前
六一儿童节完成签到 ,获得积分10
6分钟前
yujie完成签到 ,获得积分10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
江岸区志(下卷) 800
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Markets or Governments: Choosing Between Imperfect Alternatives 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695122
求助须知:如何正确求助?哪些是违规求助? 3246662
关于积分的说明 9850512
捐赠科研通 2958249
什么是DOI,文献DOI怎么找? 1622046
邀请新用户注册赠送积分活动 767654
科研通“疑难数据库(出版商)”最低求助积分说明 741239