An approach based on deep learning methods to detect the condition of solar panels in solar power plants

太阳能 功率(物理) 计算机科学 光伏系统 人工智能 工程类 环境科学 航空航天工程 电气工程 物理 量子力学
作者
Tolga Özer,Ömer S. Türkmen
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:116: 109143-109143 被引量:3
标识
DOI:10.1016/j.compeleceng.2024.109143
摘要

Solar panels are increasingly popular due to global energy shortages and rising costs. However, managing large or elevated panel systems requires regular oversight, leading to potential time and cost challenges. This study was focused on developing an AI-based drone for panel detection to address these issues and facilitate the control process. A low-cost system for AI-based identification of dusty, broken, and healthy solar panels was created using a Raspberry Pi 4B board and camera. The study proposed a Histogram Equalization (HE)-based preprocessing technique to improve the AI model. Firstly, the trainings were performed with YOLOv5 without the proposed method at epoch values of 100, 150, and 200 in order to see the effectiveness of the proposed method more clearly. As a result of these trainings, the highest F1 score was obtained as 80 %. In the second step, three deep learning algorithms - YOLOv5, YOLOv7, and YOLOv8 - with epochs of 100, 150, and 200 respectively, were used for training with the proposed method. A detailed comparative analysis of the developed models was carried out regarding their performance metrics. The YOLOv5l was obtained as the most successful panel detection model with an F1 score of 97 % at 150 epochs. The model with the best performance metrics was used in a real-time test application with an AI-based drone. F1 score results were obtained between 90 % and 97 %, mainly supporting the success rate obtained in real-time application. The results strongly support the effectiveness of this proposed method for panel detection tasks, showcasing its high efficacy and promising potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ding应助个性的糖豆采纳,获得150
1秒前
2秒前
3秒前
Vo发布了新的文献求助10
4秒前
Amadeus发布了新的文献求助10
4秒前
5秒前
5秒前
LLLLL发布了新的文献求助10
6秒前
Jasper应助欢喜的跳跳糖采纳,获得10
6秒前
自然怀梦完成签到,获得积分10
7秒前
科幻画发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
对手完成签到,获得积分10
9秒前
Vo关闭了Vo文献求助
10秒前
啾啾发布了新的文献求助10
10秒前
寻找发布了新的文献求助10
10秒前
wanci应助LLLLL采纳,获得10
10秒前
海岸发布了新的文献求助10
12秒前
12秒前
子车雁开发布了新的文献求助30
12秒前
Amadeus完成签到,获得积分10
13秒前
葡萄柚绿茶完成签到,获得积分10
14秒前
14秒前
longh发布了新的文献求助10
14秒前
寻找完成签到,获得积分10
15秒前
Zero丶小瑞完成签到 ,获得积分10
16秒前
16秒前
16秒前
17秒前
飞云发布了新的文献求助10
17秒前
17秒前
Yola发布了新的文献求助10
18秒前
充电宝应助A_goal采纳,获得10
18秒前
mSnBmaterial完成签到,获得积分10
19秒前
Amanda发布了新的文献求助10
20秒前
lisa完成签到,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962134
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140655
捐赠科研通 3241036
什么是DOI,文献DOI怎么找? 1791184
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803371