Augmenting Reinforcement Learning With Transformer-Based Scene Representation Learning for Decision-Making of Autonomous Driving

强化学习 变压器 计算机科学 人工智能 特征学习 钢筋 代表(政治) 机器学习 工程类 心理学 电气工程 社会心理学 电压 政治 法学 政治学
作者
Haochen Liu,Zhiyu Huang,Xiaoyu Mo,Chen Lv
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 4405-4421 被引量:6
标识
DOI:10.1109/tiv.2024.3372625
摘要

Decision-making for urban autonomous driving is challenging due to the stochastic nature of interactive traffic participants and the complexity of road structures. Although reinforcement learning (RL)-based decision-making schemes are promising to handle urban driving scenarios, they suffer from low sample efficiency and poor adaptability. In this paper, we propose the Scene-Rep Transformer to enhance RL decision-making capabilities through improved scene representation encoding and sequential predictive latent distillation. Specifically, a multi-stage Transformer (MST) encoder is constructed to model not only the interaction awareness between the ego vehicle and its neighbors but also intention awareness between the agents and their candidate routes. A sequential latent Transformer (SLT) with self-supervised learning objectives is employed to distill future predictive information into the latent scene representation, in order to reduce the exploration space and speed up training. The final decision-making module based on soft actor-critic (SAC) takes as input the refined latent scene representation from the Scene-Rep Transformer and generates decisions. The framework is validated in five challenging simulated urban scenarios with dense traffic, and its performance is manifested quantitatively by substantial improvements in data efficiency and performance in terms of success rate, safety, and efficiency. Qualitative results reveal that our framework is able to extract the intentions of neighbor agents, enabling better decision-making and more diversified driving behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助面壁的章北海采纳,获得10
3秒前
hyhyhyhy发布了新的文献求助10
3秒前
简单冰巧发布了新的文献求助10
3秒前
ZY完成签到,获得积分10
4秒前
7秒前
8秒前
爱撒娇的以丹完成签到,获得积分10
9秒前
11秒前
拼搏一下完成签到,获得积分10
11秒前
Vine完成签到 ,获得积分10
11秒前
12秒前
12秒前
1111发布了新的文献求助10
13秒前
ewk发布了新的文献求助10
14秒前
驰驰发布了新的文献求助10
14秒前
大个应助麻球采纳,获得30
15秒前
15秒前
周梦蝶发布了新的文献求助10
17秒前
CHEN完成签到 ,获得积分10
18秒前
19秒前
陈道哥发布了新的文献求助20
19秒前
19秒前
科研通AI2S应助1111采纳,获得10
20秒前
桐桐应助Crazy_Runner采纳,获得10
22秒前
CipherSage应助zyy采纳,获得30
22秒前
吴祥坤发布了新的文献求助10
22秒前
冰凌心恋完成签到,获得积分10
22秒前
Jasper应助初青酱采纳,获得10
24秒前
25秒前
25秒前
jssssssss完成签到,获得积分10
27秒前
lyly完成签到,获得积分10
29秒前
ming完成签到,获得积分10
29秒前
jssssssss发布了新的文献求助10
30秒前
30秒前
桐桐应助周梦蝶采纳,获得10
32秒前
32秒前
32秒前
共享精神应助红果采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542