A diagnostic model based on bioinformatics and machine learning to differentiate bipolar disorder from schizophrenia and major depressive disorder

接收机工作特性 双相情感障碍 重性抑郁障碍 精神分裂症(面向对象编程) Lasso(编程语言) 支持向量机 微阵列 微阵列分析技术 人工智能 机器学习 心理学 生物信息学 医学 基因 精神科 计算机科学 生物 基因表达 遗传学 认知 万维网
作者
Jing Shen,Chenxu Xiao,Xiwen Qiao,Qichen Zhu,Hanfei Yan,Julong Pan,Yu Feng
标识
DOI:10.1038/s41537-023-00417-1
摘要

Bipolar disorder (BD) showed the highest suicide rate of all psychiatric disorders, and its underlying causative genes and effective treatments remain unclear. During diagnosis, BD is often confused with schizophrenia (SC) and major depressive disorder (MDD), due to which patients may receive inadequate or inappropriate treatment, which is detrimental to their prognosis. This study aims to establish a diagnostic model to distinguish BD from SC and MDD in multiple public datasets through bioinformatics and machine learning and to provide new ideas for diagnosing BD in the future. Three brain tissue datasets containing BD, SC, and MDD were chosen from the Gene Expression Omnibus database (GEO), and two peripheral blood datasets were selected for validation. Linear Models for Microarray Data (Limma) analysis was carried out to identify differentially expressed genes (DEGs). Functional enrichment analysis and machine learning were utilized to identify. Least absolute shrinkage and selection operator (LASSO) regression was employed for identifying candidate immune-associated central genes, constructing protein-protein interaction networks (PPI), building artificial neural networks (ANN) for validation, and plotting receiver operating characteristic curve (ROC curve) for differentiating BD from SC and MDD and creating immune cell infiltration to study immune cell dysregulation in the three diseases. RBM10 was obtained as a candidate gene to distinguish BD from SC. Five candidate genes (LYPD1, HMBS, HEBP2, SETD3, and ECM2) were obtained to distinguish BD from MDD. The validation was performed by ANN, and ROC curves were plotted for diagnostic value assessment. The outcomes exhibited the prediction model to have a promising diagnostic value. In the immune infiltration analysis, Naive B, Resting NK, and Activated Mast Cells were found to be substantially different between BD and SC. Naive B and Memory B cells were prominently variant between BD and MDD. In this study, RBM10 was found as a candidate gene to distinguish BD from SC; LYPD1, HMBS, HEBP2, SETD3, and ECM2 serve as five candidate genes to distinguish BD from MDD. The results obtained from the ANN network showed that these candidate genes could perfectly distinguish BD from SC and MDD (76.923% and 81.538%, respectively).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
拾个勤天完成签到,获得积分10
1秒前
const完成签到,获得积分10
1秒前
2秒前
Capital完成签到,获得积分10
4秒前
梁平完成签到 ,获得积分10
4秒前
只想顺利毕业的科研狗完成签到,获得积分0
5秒前
云云完成签到,获得积分10
7秒前
蝃蝀完成签到,获得积分10
8秒前
帅过吴彦祖完成签到,获得积分10
13秒前
风趣霆完成签到,获得积分10
14秒前
欢呼妙菱完成签到,获得积分10
15秒前
科研通AI6应助云云采纳,获得10
15秒前
贲孱完成签到,获得积分10
15秒前
Dearjw1655完成签到,获得积分10
16秒前
围城完成签到 ,获得积分10
16秒前
鲲鹏完成签到 ,获得积分10
18秒前
Hzml完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
爱沉淀的太阳花完成签到,获得积分10
19秒前
xueshidaheng完成签到,获得积分0
21秒前
无极微光应助白华苍松采纳,获得20
23秒前
kaiqiang完成签到,获得积分0
23秒前
鸡蛋酱完成签到 ,获得积分10
25秒前
溪泉完成签到,获得积分10
28秒前
28秒前
草木发布了新的文献求助10
28秒前
kyt完成签到 ,获得积分10
30秒前
咄咄完成签到 ,获得积分10
32秒前
笑点低的凉面完成签到,获得积分10
34秒前
35秒前
35秒前
EricSai完成签到,获得积分10
35秒前
chenkj完成签到,获得积分10
35秒前
ikun完成签到,获得积分10
35秒前
研友_ZA2B68完成签到,获得积分0
36秒前
zz完成签到 ,获得积分10
36秒前
小成完成签到 ,获得积分10
37秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590