清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A diagnostic model based on bioinformatics and machine learning to differentiate bipolar disorder from schizophrenia and major depressive disorder

接收机工作特性 双相情感障碍 重性抑郁障碍 精神分裂症(面向对象编程) Lasso(编程语言) 支持向量机 微阵列 微阵列分析技术 人工智能 机器学习 心理学 生物信息学 医学 基因 精神科 计算机科学 生物 基因表达 遗传学 认知 万维网
作者
Jing Shen,Chenxu Xiao,Xiwen Qiao,Qichen Zhu,Yu Feng,Julong Pan,Yu Feng
标识
DOI:10.1038/s41537-023-00417-1
摘要

Abstract Bipolar disorder (BD) showed the highest suicide rate of all psychiatric disorders, and its underlying causative genes and effective treatments remain unclear. During diagnosis, BD is often confused with schizophrenia (SC) and major depressive disorder (MDD), due to which patients may receive inadequate or inappropriate treatment, which is detrimental to their prognosis. This study aims to establish a diagnostic model to distinguish BD from SC and MDD in multiple public datasets through bioinformatics and machine learning and to provide new ideas for diagnosing BD in the future. Three brain tissue datasets containing BD, SC, and MDD were chosen from the Gene Expression Omnibus database (GEO), and two peripheral blood datasets were selected for validation. Linear Models for Microarray Data (Limma) analysis was carried out to identify differentially expressed genes (DEGs). Functional enrichment analysis and machine learning were utilized to identify. Least absolute shrinkage and selection operator (LASSO) regression was employed for identifying candidate immune-associated central genes, constructing protein-protein interaction networks (PPI), building artificial neural networks (ANN) for validation, and plotting receiver operating characteristic curve (ROC curve) for differentiating BD from SC and MDD and creating immune cell infiltration to study immune cell dysregulation in the three diseases. RBM10 was obtained as a candidate gene to distinguish BD from SC. Five candidate genes (LYPD1, HMBS, HEBP2, SETD3, and ECM2) were obtained to distinguish BD from MDD. The validation was performed by ANN, and ROC curves were plotted for diagnostic value assessment. The outcomes exhibited the prediction model to have a promising diagnostic value. In the immune infiltration analysis, Naive B, Resting NK, and Activated Mast Cells were found to be substantially different between BD and SC. Naive B and Memory B cells were prominently variant between BD and MDD. In this study, RBM10 was found as a candidate gene to distinguish BD from SC; LYPD1, HMBS, HEBP2, SETD3, and ECM2 serve as five candidate genes to distinguish BD from MDD. The results obtained from the ANN network showed that these candidate genes could perfectly distinguish BD from SC and MDD (76.923% and 81.538%, respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助科研通管家采纳,获得30
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
爱静静应助科研通管家采纳,获得10
1秒前
9秒前
49秒前
肆肆完成签到,获得积分10
50秒前
jyy发布了新的文献求助10
1分钟前
1分钟前
清雨发布了新的文献求助10
1分钟前
1分钟前
chen完成签到 ,获得积分10
1分钟前
嬗变的天秤完成签到,获得积分10
1分钟前
爱静静完成签到,获得积分0
1分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
李爱国应助bukeshuo采纳,获得10
2分钟前
2分钟前
bukeshuo发布了新的文献求助10
2分钟前
sobergod完成签到 ,获得积分10
2分钟前
2分钟前
Akim应助悦耳十三采纳,获得10
3分钟前
chiyudoubao发布了新的文献求助10
3分钟前
大个应助我在这采纳,获得10
3分钟前
3分钟前
3分钟前
悦耳十三发布了新的文献求助10
3分钟前
我在这发布了新的文献求助10
3分钟前
我在这完成签到,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921888
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438