A diagnostic model based on bioinformatics and machine learning to differentiate bipolar disorder from schizophrenia and major depressive disorder

接收机工作特性 双相情感障碍 重性抑郁障碍 精神分裂症(面向对象编程) Lasso(编程语言) 支持向量机 微阵列 微阵列分析技术 人工智能 机器学习 心理学 生物信息学 医学 基因 精神科 计算机科学 生物 基因表达 遗传学 认知 万维网
作者
Jing Shen,Chenxu Xiao,Xiwen Qiao,Qichen Zhu,Yu Feng,Julong Pan,Yu Feng
标识
DOI:10.1038/s41537-023-00417-1
摘要

Abstract Bipolar disorder (BD) showed the highest suicide rate of all psychiatric disorders, and its underlying causative genes and effective treatments remain unclear. During diagnosis, BD is often confused with schizophrenia (SC) and major depressive disorder (MDD), due to which patients may receive inadequate or inappropriate treatment, which is detrimental to their prognosis. This study aims to establish a diagnostic model to distinguish BD from SC and MDD in multiple public datasets through bioinformatics and machine learning and to provide new ideas for diagnosing BD in the future. Three brain tissue datasets containing BD, SC, and MDD were chosen from the Gene Expression Omnibus database (GEO), and two peripheral blood datasets were selected for validation. Linear Models for Microarray Data (Limma) analysis was carried out to identify differentially expressed genes (DEGs). Functional enrichment analysis and machine learning were utilized to identify. Least absolute shrinkage and selection operator (LASSO) regression was employed for identifying candidate immune-associated central genes, constructing protein-protein interaction networks (PPI), building artificial neural networks (ANN) for validation, and plotting receiver operating characteristic curve (ROC curve) for differentiating BD from SC and MDD and creating immune cell infiltration to study immune cell dysregulation in the three diseases. RBM10 was obtained as a candidate gene to distinguish BD from SC. Five candidate genes (LYPD1, HMBS, HEBP2, SETD3, and ECM2) were obtained to distinguish BD from MDD. The validation was performed by ANN, and ROC curves were plotted for diagnostic value assessment. The outcomes exhibited the prediction model to have a promising diagnostic value. In the immune infiltration analysis, Naive B, Resting NK, and Activated Mast Cells were found to be substantially different between BD and SC. Naive B and Memory B cells were prominently variant between BD and MDD. In this study, RBM10 was found as a candidate gene to distinguish BD from SC; LYPD1, HMBS, HEBP2, SETD3, and ECM2 serve as five candidate genes to distinguish BD from MDD. The results obtained from the ANN network showed that these candidate genes could perfectly distinguish BD from SC and MDD (76.923% and 81.538%, respectively).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
年少的人发布了新的文献求助10
1秒前
Youth完成签到,获得积分20
2秒前
调研昵称发布了新的文献求助10
3秒前
CodeCraft应助Singularity采纳,获得10
3秒前
limbo发布了新的文献求助10
3秒前
RUI完成签到 ,获得积分10
4秒前
decade发布了新的文献求助10
4秒前
4秒前
研友_LX02xL发布了新的文献求助10
5秒前
6秒前
诗和远方的,完成签到,获得积分10
6秒前
刘星宇发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助17采纳,获得10
10秒前
谦让夜香发布了新的文献求助10
10秒前
Zhao完成签到,获得积分20
11秒前
11秒前
欠虐宝宝发布了新的文献求助10
11秒前
妙狸发布了新的文献求助10
12秒前
好烦呀发布了新的文献求助10
12秒前
13秒前
LULU完成签到,获得积分10
13秒前
自然秋柳发布了新的文献求助10
16秒前
100完成签到,获得积分10
17秒前
Dudu发布了新的文献求助10
17秒前
科研通AI2S应助二三采纳,获得10
18秒前
hkjing发布了新的文献求助10
22秒前
Akim应助菠菜采纳,获得100
23秒前
华仔应助丰富的小白菜采纳,获得10
24秒前
27秒前
28秒前
科目三应助Dudu采纳,获得30
29秒前
仁爱听露完成签到 ,获得积分10
29秒前
30秒前
33秒前
杨杨完成签到 ,获得积分10
33秒前
YY发布了新的文献求助10
34秒前
xuanyu应助费费采纳,获得30
34秒前
英俊的铭应助淡定小白菜采纳,获得10
34秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055748
求助须知:如何正确求助?哪些是违规求助? 2712398
关于积分的说明 7431409
捐赠科研通 2357400
什么是DOI,文献DOI怎么找? 1248780
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596163