Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries

标杆管理 计算机科学 可解释性 源代码 水准点(测量) 预处理器 规范化(社会学) 深度学习 机器学习 人工智能 数据预处理 数据挖掘 业务 社会学 营销 大地测量学 地理 操作系统 人类学
作者
Fujin Wang,Zhi Zhai,Bingchen Liu,Shiyu Zheng,Zhibin Zhao,Ruonan Liu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:77: 109884-109884 被引量:8
标识
DOI:10.1016/j.est.2023.109884
摘要

Great progress has been made in deep learning (DL) based state-of-health (SOH) estimation of lithium-ion batteries, which helps to provide recommendations for predictive maintenance and replacement of lithium-ion batteries. However, despite the abundance of articles, few open-source codes are publicly available. While there are several public datasets, they tend to be more oriented toward simulating laboratory environments rather than real-world usage scenarios. Moreover, they solely provide raw data without any corresponding preprocessing codes, resulting in inconsistencies in preprocessing methods across different papers. These reasons lead to unfair comparisons and ineffective improvements. In response to these problems, this paper publishes a large-scale lithium-ion battery run-to-failure dataset, consisting of 55 batteries, and provides a unified data preprocessing method. Besides, we comprehensively evaluate 5 well-known DL-based models to provide benchmark research. To be specific, first, the existing DL-based SOH estimation methods are reviewed in detail. Second, we provide a comprehensive evaluation of DL-based models on 2 large-scale datasets, including 100 batteries, with 3 input types and 3 normalization methods. Third, we make the complete evaluation codes and dataset publicly available for better comparison and model improvement. Fourth, we discuss future DL-based SOH estimation, including unsupervised learning, transfer learning, interpretability, and physics-informed machine learning. We emphasize the importance of open-source code, provide baseline estimation errors (error upper bounds), and discuss existing issues in this field. The code library is available at: https://github.com/wang-fujin/SOHbenchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jax完成签到,获得积分10
1秒前
1秒前
orixero应助飞雪残冰采纳,获得10
1秒前
下一块蛋糕完成签到 ,获得积分10
2秒前
jerome发布了新的文献求助10
2秒前
3秒前
sun发布了新的文献求助10
3秒前
3秒前
SS完成签到,获得积分20
4秒前
秋海棠完成签到,获得积分10
5秒前
落寞小懒猪完成签到,获得积分10
5秒前
5秒前
华仔应助景飞丹采纳,获得10
6秒前
学术垃圾完成签到,获得积分10
6秒前
万能图书馆应助曹中明采纳,获得10
6秒前
ting完成签到,获得积分10
7秒前
于昊关注了科研通微信公众号
7秒前
7秒前
8秒前
8秒前
charm12完成签到,获得积分10
9秒前
9秒前
跳跃的灵槐完成签到,获得积分10
9秒前
Phil完成签到,获得积分10
10秒前
小马哥完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
czq发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
勤劳野狼完成签到,获得积分20
11秒前
bkagyin应助jerome采纳,获得10
12秒前
九歌完成签到,获得积分10
12秒前
12秒前
Phil发布了新的文献求助10
12秒前
12秒前
124发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825