Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries

标杆管理 计算机科学 可解释性 源代码 水准点(测量) 预处理器 规范化(社会学) 深度学习 机器学习 人工智能 数据预处理 数据挖掘 业务 社会学 营销 大地测量学 地理 操作系统 人类学
作者
Fujin Wang,Zhi Zhai,Bingchen Liu,Shiyu Zheng,Zhibin Zhao,Xuefeng Chen
出处
期刊:Journal of energy storage [Elsevier]
卷期号:77: 109884-109884 被引量:19
标识
DOI:10.1016/j.est.2023.109884
摘要

Great progress has been made in deep learning (DL) based state-of-health (SOH) estimation of lithium-ion batteries, which helps to provide recommendations for predictive maintenance and replacement of lithium-ion batteries. However, despite the abundance of articles, few open-source codes are publicly available. While there are several public datasets, they tend to be more oriented toward simulating laboratory environments rather than real-world usage scenarios. Moreover, they solely provide raw data without any corresponding preprocessing codes, resulting in inconsistencies in preprocessing methods across different papers. These reasons lead to unfair comparisons and ineffective improvements. In response to these problems, this paper publishes a large-scale lithium-ion battery run-to-failure dataset, consisting of 55 batteries, and provides a unified data preprocessing method. Besides, we comprehensively evaluate 5 well-known DL-based models to provide benchmark research. To be specific, first, the existing DL-based SOH estimation methods are reviewed in detail. Second, we provide a comprehensive evaluation of DL-based models on 2 large-scale datasets, including 100 batteries, with 3 input types and 3 normalization methods. Third, we make the complete evaluation codes and dataset publicly available for better comparison and model improvement. Fourth, we discuss future DL-based SOH estimation, including unsupervised learning, transfer learning, interpretability, and physics-informed machine learning. We emphasize the importance of open-source code, provide baseline estimation errors (error upper bounds), and discuss existing issues in this field. The code library is available at: https://github.com/wang-fujin/SOHbenchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会长大的幸福完成签到 ,获得积分10
1秒前
iNk应助lalala采纳,获得10
1秒前
2秒前
无情念之发布了新的文献求助10
2秒前
100发布了新的文献求助10
2秒前
wanyanjin完成签到,获得积分10
3秒前
周老八发布了新的文献求助10
3秒前
3秒前
3秒前
YL发布了新的文献求助10
4秒前
qucheng完成签到 ,获得积分10
4秒前
Athos_1992完成签到,获得积分10
4秒前
隐形曼青应助一平采纳,获得10
4秒前
5秒前
写不出来完成签到,获得积分10
6秒前
儒雅醉冬完成签到,获得积分10
6秒前
lzp完成签到 ,获得积分10
6秒前
杰森斯坦虎完成签到,获得积分10
6秒前
6秒前
7秒前
叭叭完成签到,获得积分10
7秒前
Accept完成签到,获得积分10
7秒前
W哇完成签到,获得积分10
8秒前
肖肖完成签到,获得积分10
8秒前
8秒前
super小萌萌完成签到,获得积分10
8秒前
April完成签到 ,获得积分10
8秒前
雪白问兰应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得20
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
maox1aoxin应助科研通管家采纳,获得80
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
zhong完成签到,获得积分10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
100完成签到,获得积分20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672