Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries

标杆管理 计算机科学 可解释性 源代码 水准点(测量) 预处理器 规范化(社会学) 深度学习 机器学习 人工智能 数据预处理 数据挖掘 业务 社会学 营销 大地测量学 地理 操作系统 人类学
作者
Fujin Wang,Zhi Zhai,Bingchen Liu,Shiyu Zheng,Zhibin Zhao,Xuefeng Chen
出处
期刊:Journal of energy storage [Elsevier]
卷期号:77: 109884-109884 被引量:64
标识
DOI:10.1016/j.est.2023.109884
摘要

Great progress has been made in deep learning (DL) based state-of-health (SOH) estimation of lithium-ion batteries, which helps to provide recommendations for predictive maintenance and replacement of lithium-ion batteries. However, despite the abundance of articles, few open-source codes are publicly available. While there are several public datasets, they tend to be more oriented toward simulating laboratory environments rather than real-world usage scenarios. Moreover, they solely provide raw data without any corresponding preprocessing codes, resulting in inconsistencies in preprocessing methods across different papers. These reasons lead to unfair comparisons and ineffective improvements. In response to these problems, this paper publishes a large-scale lithium-ion battery run-to-failure dataset, consisting of 55 batteries, and provides a unified data preprocessing method. Besides, we comprehensively evaluate 5 well-known DL-based models to provide benchmark research. To be specific, first, the existing DL-based SOH estimation methods are reviewed in detail. Second, we provide a comprehensive evaluation of DL-based models on 2 large-scale datasets, including 100 batteries, with 3 input types and 3 normalization methods. Third, we make the complete evaluation codes and dataset publicly available for better comparison and model improvement. Fourth, we discuss future DL-based SOH estimation, including unsupervised learning, transfer learning, interpretability, and physics-informed machine learning. We emphasize the importance of open-source code, provide baseline estimation errors (error upper bounds), and discuss existing issues in this field. The code library is available at: https://github.com/wang-fujin/SOHbenchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
追寻紫夏完成签到 ,获得积分10
1秒前
霸气的菠萝完成签到,获得积分10
1秒前
Wen完成签到,获得积分10
1秒前
开放青旋应助苏silence采纳,获得80
1秒前
2秒前
yu完成签到 ,获得积分10
2秒前
Lucifer完成签到,获得积分10
2秒前
2秒前
2秒前
11完成签到,获得积分10
2秒前
scanker1981完成签到,获得积分10
2秒前
深情安青应助zhaopenghui采纳,获得10
3秒前
小星星完成签到 ,获得积分10
3秒前
600完成签到,获得积分10
3秒前
guohh完成签到,获得积分10
3秒前
4秒前
隐形白开水完成签到,获得积分0
4秒前
sakura完成签到,获得积分10
4秒前
gouqi发布了新的文献求助10
4秒前
饱满的曼寒完成签到,获得积分10
4秒前
CipherSage应助小勇仔采纳,获得10
5秒前
无心科研完成签到,获得积分10
5秒前
5秒前
6秒前
清秀迎彤完成签到 ,获得积分10
6秒前
bkagyin应助空空伊采纳,获得30
6秒前
热心雨南完成签到,获得积分10
6秒前
6秒前
wxxz发布了新的文献求助10
7秒前
CVEN完成签到,获得积分10
7秒前
7秒前
颜靖仇发布了新的文献求助10
7秒前
7秒前
孟寐以求发布了新的文献求助20
7秒前
7秒前
小化发布了新的文献求助20
8秒前
宇宙无敌暴龙战神完成签到,获得积分10
9秒前
嘿嘿应助喔喔糖采纳,获得10
9秒前
yuki完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034