Study on Phase Separation of Fused in Sarcoma by Fluorescence Correlation Spectroscopy

光谱学 荧光光谱法 荧光 荧光互相关光谱 荧光相关光谱 分析化学(期刊) 相(物质) 化学 材料科学 分离(统计) 色谱法 光学 物理 有机化学 计算机科学 机器学习 量子力学
作者
Wenxin Yu,Jian Liu,Xiangyi Huang,Jicun Ren
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.3c02711
摘要

Liquid–liquid phase separation (LLPS) of fused in sarcoma (FUS) has emerged as a fundamental principle underpinning cellular function and malfunction. However, we know little about the FUS phase transition process from individual molecules to nanoscale condensates, which plays important roles in neurodegenerative diseases. Here, we propose the fluorescence correlation spectroscopy (FCS) method to quantitatively study the phase separation process of FUS protein with the fluorescent tag-enhanced green fluorescent protein (EGFP), from individual molecules to nanoscale condensates. The characteristic diffusion time (τD) of the protein condensates can be obtained from the FCS curve, which increases with the growth of the protein hydration radius. The bigger the τD value of the protein condensates, the larger the condensates formed by the phase separation of FUS. By this method, we discovered that the critical concentration for FUS to phase separation was 20 nM. We then plotted FUS phase diagrams based on τD under different concentrations of NaCl and found that both low-salt and high-salt concentrations tended to promote FUS-EGFP phase separation. Our results showed that ATP has a good inhibitory effect on FUS phase separation, and its inhibition constant IC50 was 3.2 mM. Finally, we evaluated the inhibition efficiency of single-stranded DNA sequences (ssDNA) on FUS phase separation and demonstrated that ssDNA containing three copies of TCCCCGT had relatively strong inhibition efficiency. In summary, our work provides detailed insight into the FUS phase transition process from individual molecules to nanoscale condensates at nanomolar concentrations and can be exploited for drug screening of neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺怀蝶发布了新的文献求助10
刚刚
dzy完成签到,获得积分20
刚刚
leilei02发布了新的文献求助10
刚刚
刚刚
祖白易发布了新的文献求助10
刚刚
咸鱼发布了新的文献求助10
1秒前
Cherish完成签到,获得积分10
1秒前
Jasper应助plant采纳,获得10
1秒前
2秒前
2秒前
朴实思春发布了新的文献求助10
2秒前
3秒前
3秒前
tsehmu1完成签到 ,获得积分10
3秒前
研友_LJeoa8发布了新的文献求助10
4秒前
dzy发布了新的文献求助30
4秒前
4秒前
yaya完成签到,获得积分10
5秒前
快乐爱斯米完成签到,获得积分10
5秒前
6秒前
KKK研完成签到,获得积分10
6秒前
kkk完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
sink发布了新的文献求助10
10秒前
leilei02完成签到,获得积分20
10秒前
10秒前
像风一样发布了新的文献求助10
11秒前
景木游发布了新的文献求助10
11秒前
plant发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
王小敏敏儿完成签到,获得积分10
13秒前
14秒前
Hello应助刘娟采纳,获得20
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772132
求助须知:如何正确求助?哪些是违规求助? 3317424
关于积分的说明 10185802
捐赠科研通 3032635
什么是DOI,文献DOI怎么找? 1663634
邀请新用户注册赠送积分活动 795872
科研通“疑难数据库(出版商)”最低求助积分说明 757075