A dynamic resilience evaluation method for cross-domain swarms in confrontation

群体行为 弹性(材料科学) 控制重构 计算机科学 领域(数学分析) 过程(计算) 粒子群优化 分布式计算 人工智能 机器学习 数学 数学分析 物理 热力学 嵌入式系统 操作系统
作者
Chi Zhang,Tao Liu,Guanghan Bai,Junyong Tao,Wenjin Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:244: 109904-109904 被引量:21
标识
DOI:10.1016/j.ress.2023.109904
摘要

As a typical Internet of Things system, unmanned swarms can execute missions efficiently, while reduce risks and ensure personnel safety during operations. Because swarms in different physical domains have different advantages, the cross-domain swarms received lots of attentions recently. Since swarm has the ability to resist damage and recover from damage through self-organization and self-reconfiguration, resilience has become an important indicator for swarm design and mission planning in adversarial environments. Existing resilience evaluation methods require a complete degradation-recovery-stabilization process of system performance, which is not proper for the cross-domain swarm under dynamic and uncertain environment. This paper proposes a dynamic resilience evaluation method for cross-domain swarms in confrontation scenario. First, a cross-domain swarm confrontation model is developed and the swarm confrontation performance indicator is proposed. Second, a dynamic resilience evaluation method is proposed for cross-domain swarm. Then, a confrontation strategy selection model is given based on the resilience measurement. A case study of air-ground swarm in confrontations is provided for illustration and analysis. As can be seen from the simulation results, the proposed dynamic resilience method can better capture the dynamic and uncertain nature of cross-domain swarms in confrontation. The proposed strategy selection model can improve the overall resilience of the swarm, and ultimately improve the winning percentage of the cross-domain swarm in confrontation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
缓慢尔岚发布了新的文献求助10
1秒前
善良随阴完成签到,获得积分10
1秒前
1秒前
1秒前
奶白的雪子完成签到,获得积分10
1秒前
星辰大海应助阿依咕噜采纳,获得10
3秒前
香蕉觅云应助DG采纳,获得10
3秒前
睡觉了完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Y_Y完成签到,获得积分10
4秒前
zorro3574发布了新的文献求助10
4秒前
4秒前
4秒前
嘿嘿完成签到,获得积分10
5秒前
renxin发布了新的文献求助10
5秒前
6秒前
7秒前
内向孤菱发布了新的文献求助30
7秒前
7秒前
可可布朗尼完成签到,获得积分10
8秒前
思源应助自信笑槐采纳,获得10
9秒前
10秒前
斑比发布了新的文献求助10
11秒前
JUN发布了新的文献求助10
11秒前
12秒前
bkagyin应助澄桦采纳,获得10
12秒前
天真似狮发布了新的文献求助10
14秒前
15秒前
16秒前
科研通AI6应助厚朴采纳,获得10
16秒前
lzp完成签到 ,获得积分10
17秒前
17秒前
已知中的未知完成签到 ,获得积分10
17秒前
17秒前
chenbin1105完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131