A dynamic resilience evaluation method for cross-domain swarms in confrontation

群体行为 弹性(材料科学) 控制重构 计算机科学 领域(数学分析) 过程(计算) 粒子群优化 分布式计算 人工智能 机器学习 数学 热力学 操作系统 物理 数学分析 嵌入式系统
作者
Chi Zhang,Tao Liu,Guanghan Bai,Junyong Tao,Wenjin Zhu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:244: 109904-109904 被引量:21
标识
DOI:10.1016/j.ress.2023.109904
摘要

As a typical Internet of Things system, unmanned swarms can execute missions efficiently, while reduce risks and ensure personnel safety during operations. Because swarms in different physical domains have different advantages, the cross-domain swarms received lots of attentions recently. Since swarm has the ability to resist damage and recover from damage through self-organization and self-reconfiguration, resilience has become an important indicator for swarm design and mission planning in adversarial environments. Existing resilience evaluation methods require a complete degradation-recovery-stabilization process of system performance, which is not proper for the cross-domain swarm under dynamic and uncertain environment. This paper proposes a dynamic resilience evaluation method for cross-domain swarms in confrontation scenario. First, a cross-domain swarm confrontation model is developed and the swarm confrontation performance indicator is proposed. Second, a dynamic resilience evaluation method is proposed for cross-domain swarm. Then, a confrontation strategy selection model is given based on the resilience measurement. A case study of air-ground swarm in confrontations is provided for illustration and analysis. As can be seen from the simulation results, the proposed dynamic resilience method can better capture the dynamic and uncertain nature of cross-domain swarms in confrontation. The proposed strategy selection model can improve the overall resilience of the swarm, and ultimately improve the winning percentage of the cross-domain swarm in confrontation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助文静的夜澄采纳,获得10
刚刚
GPTea应助porcelainn123采纳,获得20
刚刚
刚刚
刚刚
白水完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
柒柒发布了新的文献求助10
1秒前
如栩完成签到 ,获得积分10
1秒前
眉清目秀的大猩猩完成签到,获得积分10
1秒前
许多知识完成签到,获得积分20
1秒前
哈密瓜发布了新的文献求助10
1秒前
毛茅茅猫完成签到,获得积分10
2秒前
共享精神应助zxx采纳,获得10
2秒前
2秒前
凌中豆完成签到,获得积分10
3秒前
Lucas应助樱花鱼不香采纳,获得10
3秒前
xx11完成签到,获得积分20
4秒前
大模型应助faker采纳,获得10
4秒前
无情尔芙完成签到,获得积分10
4秒前
甜乎贝贝发布了新的文献求助10
4秒前
XGuo完成签到 ,获得积分20
4秒前
大将军完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI6应助高贵的安寒采纳,获得10
5秒前
5秒前
strangeliu完成签到,获得积分10
6秒前
mikaqyan给mikaqyan的求助进行了留言
6秒前
6秒前
6秒前
lwwlccc完成签到,获得积分10
7秒前
7秒前
菟丝子完成签到,获得积分10
7秒前
QH应助科研通管家采纳,获得10
7秒前
小茗完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
ding应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517136
求助须知:如何正确求助?哪些是违规求助? 4610040
关于积分的说明 14519807
捐赠科研通 4547100
什么是DOI,文献DOI怎么找? 2491491
邀请新用户注册赠送积分活动 1473109
关于科研通互助平台的介绍 1445010