清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evaluating the pedestrian level of service for varying trip purposes using machine learning algorithms

行人 娱乐 计算机科学 运输工程 感觉 情感(语言学) 模拟 工程类 心理学 社会心理学 沟通 法学 政治学
作者
Deborah Paul,Sara Moridpour,Srikanth Venkatesan,Nuwan Withanagamage
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:4
标识
DOI:10.1038/s41598-024-53403-7
摘要

Abstract The pedestrians’ feeling of comfort while walking on footpaths varies according to the time of day, environment, and the purpose of the trip. The quality of service offered by pedestrian facilities such as walkways, intersections, and public places is evaluated by the Pedestrian level of service (PLOS) and has been measured from time to time, to upgrade and maintain the sustainable travel choice of people. This paper aims to focus on the level of service based on three main trip purposes such as work, education, and recreation, while considering various path characteristics and pedestrian flow characteristics that affect the pedestrian’s feeling of comfort on the walkways. The data has been collected using pedestrian questionnaire surveys and pedestrian sensors in the Melbourne central business district and the significant factors that influence the PLOS for each trip purpose will be chosen using the Mutual Information gain, which is found to be different for each trip purpose. The major influencing factors that affect the PLOS will be used to develop machine learning models for three trip purposes separately using Random Forest and Light-GBM algorithm in Python. The accuracy of prediction using the light GBM model is 0.74 for education, 0.80 for recreation, and 0.70 for work trip purposes. It is found using SHAP which stands for Shapely Additive explanations that the factors such as interpersonal distance, distance from vehicles, construction sites, vehicle volume, traffic noise, and footpath surface are the most influencing variables that affect the PLOS based on three different trip purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vbnn完成签到 ,获得积分10
9秒前
红茸茸羊完成签到 ,获得积分10
14秒前
19秒前
mf2002mf完成签到 ,获得积分10
22秒前
iberis完成签到 ,获得积分10
28秒前
藜藜藜在乎你完成签到 ,获得积分10
30秒前
pjxxx完成签到 ,获得积分10
30秒前
36秒前
X519664508完成签到,获得积分0
43秒前
48秒前
Arthur发布了新的文献求助10
53秒前
59秒前
Arthur完成签到,获得积分10
1分钟前
GGBond完成签到 ,获得积分10
1分钟前
酷波er应助三井库里采纳,获得10
1分钟前
1分钟前
三井库里发布了新的文献求助10
1分钟前
1分钟前
1分钟前
iNk应助几米的漫画99采纳,获得10
1分钟前
lyj完成签到 ,获得积分10
1分钟前
紫清发布了新的文献求助10
2分钟前
紫清完成签到,获得积分10
2分钟前
2分钟前
勤奋凡之完成签到 ,获得积分10
2分钟前
2分钟前
无辜的行云完成签到 ,获得积分0
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
xiaofeixia完成签到 ,获得积分10
2分钟前
研友_Lw7OvL完成签到 ,获得积分10
2分钟前
澄碧千顷完成签到 ,获得积分10
3分钟前
3分钟前
lt0217发布了新的文献求助10
3分钟前
英喆完成签到 ,获得积分10
3分钟前
IlIIlIlIIIllI应助科研通管家采纳,获得20
3分钟前
李爱国应助lt0217采纳,获得10
3分钟前
眯眯眼的安雁完成签到 ,获得积分10
3分钟前
3分钟前
zhilianghui0807完成签到 ,获得积分10
3分钟前
星火发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466837
求助须知:如何正确求助?哪些是违规求助? 3059674
关于积分的说明 9067359
捐赠科研通 2750142
什么是DOI,文献DOI怎么找? 1509065
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696913