Combination of feature selection and geographical stratification increases the soil total nitrogen estimation accuracy based on vis-NIR and pXRF spectral fusion

特征选择 选择(遗传算法) 融合 分层(种子) 特征(语言学) 数学 统计 估计 土壤科学 氮气 模式识别(心理学) 人工智能 计算机科学 环境科学 化学 工程类 农学 生物 哲学 休眠 发芽 有机化学 种子休眠 系统工程 语言学
作者
Jianghui Song,Xiaoyan Shi,Haijiang Wang,Xin Lv,Wenxu Zhang,Jingang Wang,Tiansheng Li,Weidi Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108636-108636 被引量:4
标识
DOI:10.1016/j.compag.2024.108636
摘要

Fast and accurate monitoring of soil total nitrogen (TN) content is particularly important to optimize agricultural inputs (e.g. fertilizers) and inhibit N loss-induced pollution. Proximal soil sensing combined with multi-sensor fusion has been considered to be a promising alternative to traditional laboratory analysis because it can achieve fast, non-destructive, environmentally friendly, and low-cost monitoring. However, the accuracy of this technique depends on the heterogeneity of the dataset and the data fusion strategy. In this study, a total of 500 soil samples were collected from two locations with high degree of soil and environment heterogeneity in Xinjiang, China, and then visible-near-infrared spectroscopy (vis-NIR), portable X-ray fluorescence (pXRF) spectroscopy and soil TN measurement were conducted in the laboratory. Based on partial least squares regression algorithm, direct concatenation, outer-product matrix analysis, and sequentially orthogonalized partial least-square (SO-PLS) were applied for multi-sensor data fusion by using full spectra or spectral features. The results showed that the estimation accuracy using vis-NIR spectral data were higher than pXRF spectral data. Compared with single sensor data and full-spectrum data fusion, the feature selection combined with data fusion contributed to a higher soil TN estimation accuracy, and the competitive adaptive reweighted sampling combined with SO-PLS fusion and geographical stratification modeling strategy had the highest soil TN estimation accuracy, with a root mean square error (RMSE) of 0.1838 g kg−1, and a Lin's concordance correlation coefficient of 0.86. It was worth noting that geographical stratification was an effective modeling strategy to improve the TN estimation accuracy based on multi-sensor data fusion, and its RMSE was 0.10 % ∼ 11.70 % lower than that of global modeling. This study highlights the potential of feature selection combined with geographic stratification to increase the soil TN estimation accuracy based on multi-sensor fusion, especially in regions with high soil and environmental heterogeneity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风雨中飘摇应助壹君采纳,获得50
1秒前
靓丽的发箍完成签到,获得积分10
2秒前
无私秋珊应助旷野采纳,获得20
2秒前
ysx_fish发布了新的文献求助10
2秒前
枫溪发布了新的文献求助10
3秒前
XXT完成签到,获得积分10
5秒前
5秒前
wanci应助sunshine采纳,获得10
6秒前
脑洞疼应助章小蒲采纳,获得10
8秒前
cayde完成签到,获得积分10
9秒前
qq完成签到,获得积分10
9秒前
乐安发布了新的文献求助10
10秒前
eric888应助ysx_fish采纳,获得150
13秒前
完美磬完成签到,获得积分10
13秒前
13秒前
枫溪完成签到,获得积分10
14秒前
建丰完成签到,获得积分10
15秒前
15秒前
不知终日梦为鱼完成签到,获得积分10
17秒前
香蕉觅云应助魔幻安筠采纳,获得10
17秒前
李李完成签到,获得积分10
18秒前
18秒前
舍曲林发布了新的文献求助30
19秒前
张雯思发布了新的文献求助10
19秒前
19秒前
王博士完成签到,获得积分10
19秒前
19秒前
邱素妮发布了新的文献求助10
19秒前
陈梓佳发布了新的文献求助10
21秒前
城南烤地瓜完成签到 ,获得积分10
22秒前
sunshine发布了新的文献求助10
22秒前
章小蒲发布了新的文献求助10
22秒前
cui完成签到,获得积分10
23秒前
香蕉觅云应助H哈采纳,获得10
23秒前
CipherSage应助ysx_fish采纳,获得10
24秒前
Zhou发布了新的文献求助10
25秒前
Lin发布了新的文献求助10
25秒前
27秒前
30秒前
wddsf发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999649
求助须知:如何正确求助?哪些是违规求助? 3539089
关于积分的说明 11275836
捐赠科研通 3277841
什么是DOI,文献DOI怎么找? 1807756
邀请新用户注册赠送积分活动 884129
科研通“疑难数据库(出版商)”最低求助积分说明 810142