已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of machine learning models using multi-source data for geographical traceability and content prediction of Eucommia ulmoides leaves

杜仲 偏最小二乘回归 计算机科学 支持向量机 桃叶珊瑚甙 回归分析 线性判别分析 预测建模 人工智能 机器学习 模式识别(心理学) 数据挖掘 化学 数学 环烯醚萜 医学 替代医学 病理 中医药 有机化学 糖苷
作者
Yanying Zhang,Xinyan Zhu,Yuanzhong Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:313: 124136-124136 被引量:1
标识
DOI:10.1016/j.saa.2024.124136
摘要

Rapid and scientific quality evaluation is a hot topic in the research of food and medicinal plants. With the increasing popularity of derivative products from Eucommia ulmoides leaves, quality and safety have attracted public attention. The present study utilized multi-source data and traditional machine learning to conduct geographical traceability and content prediction research on Eucommia ulmoides leaves. Explored the impact of different preprocessing methods and low-level data fusion strategy on the performance of classification and regression models. The classification analysis results indicated that the partial least squares discriminant analysis (PLS-DA) established by low-level fusion of two infrared spectroscopy techniques based on first derivative (FD) preprocessing was most suitable for geographical traceability of Eucommia ulmoides leaves, with an accuracy rate of up to 100 %. Through regression analysis, it was found that the preprocessing methods and data blocks applicable to the four chemical components were inconsistent. The optimal partial least squares regression (PLSR) model based on aucubin (AU), geniposidic acid (GPA), and chlorogenic acid (CA) had a residual predictive deviation (RPD) value higher than 2.0, achieving satisfactory predictive performance. However, the PLSR model based on quercetin (QU) had poor performance (RPD = 1.541) and needed further improvement. Overall, the present study proposed a strategy that can effectively evaluate the quality of Eucommia ulmoides leaves, while also providing new ideas for the quality evaluation of food and medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
钰c完成签到,获得积分20
3秒前
SiO2完成签到 ,获得积分10
5秒前
希希完成签到 ,获得积分10
5秒前
JIAO完成签到,获得积分10
5秒前
QWSS发布了新的文献求助10
6秒前
钰c发布了新的文献求助10
6秒前
6秒前
QQQQ完成签到,获得积分10
7秒前
7秒前
QQQQ发布了新的文献求助10
12秒前
纯真玉兰发布了新的文献求助10
13秒前
14秒前
fafafa完成签到,获得积分10
16秒前
SCI完成签到 ,获得积分10
16秒前
20秒前
杜客完成签到,获得积分10
20秒前
22秒前
NexusExplorer应助不会游泳采纳,获得10
22秒前
22秒前
rynchee完成签到 ,获得积分0
23秒前
B哥完成签到,获得积分10
24秒前
万能图书馆应助Donger采纳,获得10
25秒前
linkman发布了新的文献求助10
26秒前
Enns完成签到 ,获得积分10
26秒前
杜客发布了新的文献求助10
27秒前
32秒前
Xxxxzzz完成签到,获得积分10
32秒前
勤奋映之完成签到 ,获得积分10
35秒前
不会游泳发布了新的文献求助10
36秒前
乐乐应助hcmsaobang2001采纳,获得10
42秒前
43秒前
SciGPT应助科研通管家采纳,获得10
44秒前
爆米花应助科研通管家采纳,获得10
44秒前
Orange应助科研通管家采纳,获得30
44秒前
阿宝发布了新的文献求助10
45秒前
wuhuofeng关注了科研通微信公众号
46秒前
刘松发布了新的文献求助10
48秒前
49秒前
清爽难胜完成签到,获得积分10
52秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191