Nondestructive prediction of fruit detachment force for investigating postharvest grape abscission

浆果 采后 脱落 均方误差 决定系数 线性回归 园艺 鲜食葡萄 食品科学 化学 数学 植物 统计 生物
作者
Ruijia Zhang,Zheng Bian,Peiwen Wu,Ye Liu,Bowen Li,Jiaxin Xiong,Yifan Zhang,Benzhong Zhu
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:209: 112691-112691 被引量:1
标识
DOI:10.1016/j.postharvbio.2023.112691
摘要

The distinct flavor and beneficial nutritional qualities of table grapes make them a top choice among customers. However, due to natural senescence, environmental stress, and excessive SO2 preservatives, grapes are prone to abscission after harvest, which increases harvest losses, lowers fruit quality, and reduces economic value. A primary cause of grape abscission is a decrease in fruit detachment force (FDF), which affects the berry stem's ability to support the weight of the berries and environmental stress. However, the majority of the FDF measurement methodologies used in earlier studies rely on destructive methods, which not only preclude future studies on the same samples but also substantially raise experiment repeatability error. In this study, a nondestructive method was developed to predict FDF based on grape visible features, allowing the change in FDF to be observed at any point during the postharvest preservation of grapes. First, physiological indexes related to FDF were screened and subsequently, 10 highly correlated indexes, such as berry color, berry weight, berry length, etc., were obtained. Thereafter, four machine learning models such as multiple linear regression (MLR), principal component regression (PCR), back propagation (BP) neural networks and genetic algorithm back propagation (GA-BP) neural networks were employed to predict FDF from relatively highly correlated physiological indexes. The results suggested that GA-BP model had the highest prediction efficiency with the correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE) of R2 = 0.833, RMSE = 0.426, MAPE = 0.163, respectively. Finally, the nondestructive FDF prediction model by the GA-BP model was developed using nondestructive apparent characteristics extracted using machine vision technology. This model achieved a good fitting effect, with R2 = 0.812, RMSE= 0.426, and MAPE= 0.334, respectively. In order to monitor the FDF change during grape postharvest storage and predict grape abscission, an effective and nondestructive FDF prediction method has been successfully developed. This encourages the studies on the physiological and molecular mechanism of abscission, and the use of precise fresh-keeping techniques for postharvest grape in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率不惜完成签到,获得积分20
1秒前
Lucas应助琉璃苣采纳,获得10
1秒前
yiyi完成签到,获得积分20
2秒前
dyauuu完成签到,获得积分10
2秒前
传奇3应助off采纳,获得10
2秒前
产电菌菌主完成签到,获得积分10
2秒前
折镜发布了新的文献求助10
4秒前
4秒前
小蘑菇应助volvoamg采纳,获得10
5秒前
宋德宇发布了新的文献求助20
5秒前
6秒前
伟航发布了新的文献求助10
6秒前
关中人发布了新的文献求助10
7秒前
酷炫的若之完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
13秒前
李健应助琴_Q123采纳,获得10
13秒前
冷酷愚志发布了新的文献求助10
14秒前
15秒前
Ava应助不胡思乱想大鹅酱采纳,获得10
16秒前
太阳完成签到,获得积分20
17秒前
wendyw完成签到,获得积分10
18秒前
volvoamg发布了新的文献求助10
18秒前
迷人幻波发布了新的文献求助10
19秒前
Owen应助自觉的映阳采纳,获得10
19秒前
tao发布了新的文献求助10
19秒前
深情安青应助ranj采纳,获得200
19秒前
香蕉觅云应助安静发箍采纳,获得10
19秒前
20秒前
22秒前
23秒前
23秒前
24秒前
24秒前
难过的蘑菇完成签到,获得积分10
24秒前
suyou完成签到 ,获得积分10
25秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219300
求助须知:如何正确求助?哪些是违规求助? 2868223
关于积分的说明 8159815
捐赠科研通 2535246
什么是DOI,文献DOI怎么找? 1367634
科研通“疑难数据库(出版商)”最低求助积分说明 645072
邀请新用户注册赠送积分活动 618298