Nondestructive prediction of fruit detachment force for investigating postharvest grape abscission

浆果 采后 脱落 均方误差 决定系数 线性回归 园艺 鲜食葡萄 食品科学 化学 数学 植物 统计 生物
作者
Ruijia Zhang,Zheng Bian,Peiwen Wu,Ye Liu,Bowen Li,Jiaxin Xiong,Yifan Zhang,Benzhong Zhu
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:209: 112691-112691 被引量:3
标识
DOI:10.1016/j.postharvbio.2023.112691
摘要

The distinct flavor and beneficial nutritional qualities of table grapes make them a top choice among customers. However, due to natural senescence, environmental stress, and excessive SO2 preservatives, grapes are prone to abscission after harvest, which increases harvest losses, lowers fruit quality, and reduces economic value. A primary cause of grape abscission is a decrease in fruit detachment force (FDF), which affects the berry stem's ability to support the weight of the berries and environmental stress. However, the majority of the FDF measurement methodologies used in earlier studies rely on destructive methods, which not only preclude future studies on the same samples but also substantially raise experiment repeatability error. In this study, a nondestructive method was developed to predict FDF based on grape visible features, allowing the change in FDF to be observed at any point during the postharvest preservation of grapes. First, physiological indexes related to FDF were screened and subsequently, 10 highly correlated indexes, such as berry color, berry weight, berry length, etc., were obtained. Thereafter, four machine learning models such as multiple linear regression (MLR), principal component regression (PCR), back propagation (BP) neural networks and genetic algorithm back propagation (GA-BP) neural networks were employed to predict FDF from relatively highly correlated physiological indexes. The results suggested that GA-BP model had the highest prediction efficiency with the correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE) of R2 = 0.833, RMSE = 0.426, MAPE = 0.163, respectively. Finally, the nondestructive FDF prediction model by the GA-BP model was developed using nondestructive apparent characteristics extracted using machine vision technology. This model achieved a good fitting effect, with R2 = 0.812, RMSE= 0.426, and MAPE= 0.334, respectively. In order to monitor the FDF change during grape postharvest storage and predict grape abscission, an effective and nondestructive FDF prediction method has been successfully developed. This encourages the studies on the physiological and molecular mechanism of abscission, and the use of precise fresh-keeping techniques for postharvest grape in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦秋思完成签到,获得积分10
1秒前
kuyng发布了新的文献求助10
1秒前
搞怪的友桃完成签到 ,获得积分10
1秒前
liuyue发布了新的文献求助10
3秒前
qqqq发布了新的文献求助10
3秒前
wy.he应助bingbing采纳,获得10
3秒前
丘比特应助San_Chen采纳,获得10
3秒前
Jouleken完成签到,获得积分10
4秒前
上官尔芙完成签到,获得积分10
5秒前
5秒前
哈哈2022完成签到,获得积分10
5秒前
李李完成签到,获得积分10
7秒前
灯火完成签到,获得积分10
7秒前
wen完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
小象完成签到,获得积分10
8秒前
华仔应助木木三采纳,获得10
8秒前
9秒前
沉默画板完成签到 ,获得积分10
9秒前
有风的地方完成签到 ,获得积分10
9秒前
卡卡罗特先森完成签到 ,获得积分10
9秒前
ailyna发布了新的文献求助10
10秒前
10秒前
10秒前
ctomit发布了新的文献求助200
10秒前
bingbing完成签到,获得积分10
11秒前
朱建军应助yoyoo采纳,获得10
11秒前
斯文败类应助yyyy采纳,获得30
11秒前
haokeyan完成签到,获得积分10
12秒前
12秒前
fan发布了新的文献求助10
12秒前
lieditongxu发布了新的文献求助10
13秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
一年5篇发布了新的文献求助10
14秒前
baekhyun发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086