亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nondestructive prediction of fruit detachment force for investigating postharvest grape abscission

浆果 采后 脱落 均方误差 决定系数 线性回归 园艺 鲜食葡萄 食品科学 化学 数学 植物 统计 生物
作者
Ruijia Zhang,Zheng Bian,Peiwen Wu,Ye Liu,Bowen Li,Jiaxin Xiong,Yifan Zhang,Benzhong Zhu
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:209: 112691-112691 被引量:3
标识
DOI:10.1016/j.postharvbio.2023.112691
摘要

The distinct flavor and beneficial nutritional qualities of table grapes make them a top choice among customers. However, due to natural senescence, environmental stress, and excessive SO2 preservatives, grapes are prone to abscission after harvest, which increases harvest losses, lowers fruit quality, and reduces economic value. A primary cause of grape abscission is a decrease in fruit detachment force (FDF), which affects the berry stem's ability to support the weight of the berries and environmental stress. However, the majority of the FDF measurement methodologies used in earlier studies rely on destructive methods, which not only preclude future studies on the same samples but also substantially raise experiment repeatability error. In this study, a nondestructive method was developed to predict FDF based on grape visible features, allowing the change in FDF to be observed at any point during the postharvest preservation of grapes. First, physiological indexes related to FDF were screened and subsequently, 10 highly correlated indexes, such as berry color, berry weight, berry length, etc., were obtained. Thereafter, four machine learning models such as multiple linear regression (MLR), principal component regression (PCR), back propagation (BP) neural networks and genetic algorithm back propagation (GA-BP) neural networks were employed to predict FDF from relatively highly correlated physiological indexes. The results suggested that GA-BP model had the highest prediction efficiency with the correlation coefficient (R2), root mean square error (RMSE) and mean absolute percentage error (MAPE) of R2 = 0.833, RMSE = 0.426, MAPE = 0.163, respectively. Finally, the nondestructive FDF prediction model by the GA-BP model was developed using nondestructive apparent characteristics extracted using machine vision technology. This model achieved a good fitting effect, with R2 = 0.812, RMSE= 0.426, and MAPE= 0.334, respectively. In order to monitor the FDF change during grape postharvest storage and predict grape abscission, an effective and nondestructive FDF prediction method has been successfully developed. This encourages the studies on the physiological and molecular mechanism of abscission, and the use of precise fresh-keeping techniques for postharvest grape in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助chenjy202303采纳,获得20
21秒前
27秒前
Criminology34发布了新的文献求助100
31秒前
所所应助lawang采纳,获得10
33秒前
华仔应助lawang采纳,获得10
33秒前
情怀应助lawang采纳,获得10
33秒前
无花果应助lawang采纳,获得10
33秒前
酷波er应助lawang采纳,获得10
33秒前
今后应助lawang采纳,获得10
33秒前
丘比特应助lawang采纳,获得10
33秒前
Jasper应助lawang采纳,获得10
33秒前
善学以致用应助lawang采纳,获得10
33秒前
英俊的铭应助lawang采纳,获得10
33秒前
40秒前
充电宝应助科研通管家采纳,获得10
40秒前
47秒前
49秒前
chenjy202303发布了新的文献求助20
54秒前
Endymion发布了新的文献求助10
54秒前
今后应助Endymion采纳,获得10
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957