聚脲
弹性体
韧性
材料科学
复合材料
共价键
氢键
高分子科学
高分子化学
化学
分子
有机化学
聚氨酯
作者
Liwei Lu,Jianben Xu,Jiongchao Li,Yuedong Xing,Zhongqun Zhou,Faai Zhang
出处
期刊:Macromolecules
[American Chemical Society]
日期:2024-02-23
卷期号:57 (5): 2100-2109
被引量:9
标识
DOI:10.1021/acs.macromol.3c02202
摘要
High-performance elastomers that possess a combination of high mechanical toughness and fast healability have garnered extensive interest because of their diverse application potential. Inspired by the unique multiple hydrogen bond (H-bond) structure of spider silk and the rapid dynamic exchange of hindered urea bonds (HUBs), a self-healing polyurea elastomer with ultrahigh toughness was designed by incorporating dynamic sextuple H-bonds and HUBs into the polymer chain. Such a design affords high stretchability (1586%), excellent toughness (45.53 MJ m–3), good self-healing efficiency (91.6%), fracture energy (39.68 kJ m–2), and recyclability. The high mechanical performance and good healability are attributed to the presence of reversibly cross-linked noncovalent sextuple H-bonds and dynamically covalent HUBs, which have been validated by stress relaxation tests. Meanwhile, by substituting the chain extender adipic dihydrazide with hexamethylenediamine, which possesses a comparable structure but fewer amide bonds, the effect of sextuple H-bonds on elastomers was confirmed. More importantly, when a conductive layer of graphene oxide was applied to the surface of the resulting elastomer, the elastomers exhibited potential applications in strain sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI