Tensor Ring Decomposition Guided Dictionary Learning for OCT Image Denoising

计算机科学 先验概率 人工智能 光学相干层析成像 张量(固有定义) 降噪 模式识别(心理学) 结构张量 散斑噪声 迭代重建 图像(数学) 算法 数学 光学 物理 纯数学 贝叶斯概率
作者
Parisa Ghaderi Daneshmand,Hossein Rabbani
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2547-2562 被引量:1
标识
DOI:10.1109/tmi.2024.3369176
摘要

Optical coherence tomography (OCT) is a non-invasive and effective tool for the imaging of retinal tissue. However, the heavy speckle noise, resulting from multiple scattering of the light waves, obscures important morphological structures and impairs the clinical diagnosis of ocular diseases. In this paper, we propose a novel and powerful model known as tensor ring decomposition-guided dictionary learning (TRGDL) for OCT image denoising, which can simultaneously utilize two useful complementary priors, i.e., three-dimensional low-rank and sparsity priors, under a unified framework. Specifically, to effectively use the strong correlation between nearby OCT frames, we construct the OCT group tensors by extracting cubic patches from OCT images and clustering similar patches. Then, since each created OCT group tensor has a low-rank structure, to exploit spatial, non-local, and its temporal correlations in a balanced way, we enforce the TR decomposition model on each OCT group tensor. Next, to use the beneficial three-dimensional inter-group sparsity, we learn shared dictionaries in both spatial and temporal dimensions from all of the stacked OCT group tensors. Furthermore, we develop an effective algorithm to solve the resulting optimization problem by using two efficient optimization approaches, including proximal alternating minimization and the alternative direction method of multipliers. Finally, extensive experiments on OCT datasets from various imaging devices are conducted to prove the generality and usefulness of the proposed TRGDL model. Experimental simulation results show that the suggested TRGDL model outperforms state-of-the-art approaches for OCT image denoising both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助自由的威采纳,获得10
1秒前
2秒前
搜集达人应助dsdingding采纳,获得10
3秒前
3秒前
乌龙茶完成签到 ,获得积分10
3秒前
3秒前
3秒前
在南方看北方完成签到,获得积分10
4秒前
Anna Jenna发布了新的文献求助10
4秒前
6秒前
6秒前
11完成签到,获得积分20
6秒前
6秒前
wj发布了新的文献求助10
10秒前
11秒前
嘿嘿发布了新的文献求助10
11秒前
乐乐应助Tian采纳,获得30
12秒前
曹小艺发布了新的文献求助30
12秒前
Kindy蛋发布了新的文献求助10
12秒前
CipherSage应助FYY采纳,获得10
12秒前
朱朱给朱朱的求助进行了留言
12秒前
12秒前
乐乐应助俗人采纳,获得10
13秒前
小李发布了新的文献求助10
14秒前
搜集达人应助毅诚菌采纳,获得10
15秒前
自由的威发布了新的文献求助10
18秒前
慕青应助wj采纳,获得10
18秒前
Eva关注了科研通微信公众号
18秒前
21秒前
24秒前
25秒前
自由的威完成签到,获得积分10
25秒前
现代的谷波完成签到,获得积分10
25秒前
曹小艺完成签到,获得积分10
27秒前
小李完成签到,获得积分10
27秒前
27秒前
27秒前
RUIRUIRUI完成签到,获得积分10
28秒前
Anna Jenna完成签到,获得积分10
29秒前
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240587
求助须知:如何正确求助?哪些是违规求助? 2885378
关于积分的说明 8238146
捐赠科研通 2553716
什么是DOI,文献DOI怎么找? 1381834
科研通“疑难数据库(出版商)”最低求助积分说明 649366
邀请新用户注册赠送积分活动 625009