Tensor Ring Decomposition Guided Dictionary Learning for OCT Image Denoising

计算机科学 先验概率 人工智能 光学相干层析成像 张量(固有定义) 降噪 模式识别(心理学) 结构张量 散斑噪声 迭代重建 图像(数学) 算法 数学 光学 物理 纯数学 贝叶斯概率
作者
Parisa Ghaderi Daneshmand,Hossein Rabbani
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2547-2562 被引量:1
标识
DOI:10.1109/tmi.2024.3369176
摘要

Optical coherence tomography (OCT) is a non-invasive and effective tool for the imaging of retinal tissue. However, the heavy speckle noise, resulting from multiple scattering of the light waves, obscures important morphological structures and impairs the clinical diagnosis of ocular diseases. In this paper, we propose a novel and powerful model known as tensor ring decomposition-guided dictionary learning (TRGDL) for OCT image denoising, which can simultaneously utilize two useful complementary priors, i.e., three-dimensional low-rank and sparsity priors, under a unified framework. Specifically, to effectively use the strong correlation between nearby OCT frames, we construct the OCT group tensors by extracting cubic patches from OCT images and clustering similar patches. Then, since each created OCT group tensor has a low-rank structure, to exploit spatial, non-local, and its temporal correlations in a balanced way, we enforce the TR decomposition model on each OCT group tensor. Next, to use the beneficial three-dimensional inter-group sparsity, we learn shared dictionaries in both spatial and temporal dimensions from all of the stacked OCT group tensors. Furthermore, we develop an effective algorithm to solve the resulting optimization problem by using two efficient optimization approaches, including proximal alternating minimization and the alternative direction method of multipliers. Finally, extensive experiments on OCT datasets from various imaging devices are conducted to prove the generality and usefulness of the proposed TRGDL model. Experimental simulation results show that the suggested TRGDL model outperforms state-of-the-art approaches for OCT image denoising both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
许win应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
贪玩手链应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
嘎嘎顺利完成签到,获得积分10
2秒前
坤坤发布了新的文献求助10
3秒前
XXF发布了新的文献求助10
3秒前
wubobo完成签到,获得积分10
3秒前
4秒前
思源应助HopeStar采纳,获得10
4秒前
5秒前
zqh完成签到,获得积分20
6秒前
6秒前
嘎嘎顺利发布了新的文献求助10
6秒前
按住心动完成签到,获得积分10
7秒前
星辰大海应助屁王采纳,获得10
7秒前
Owen应助彬彬采纳,获得10
8秒前
8秒前
Jasen完成签到,获得积分10
8秒前
轻轻地呼吸完成签到,获得积分10
8秒前
8秒前
明天更好发布了新的文献求助10
8秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740