Tensor Ring Decomposition Guided Dictionary Learning for OCT Image Denoising

计算机科学 先验概率 人工智能 光学相干层析成像 张量(固有定义) 降噪 模式识别(心理学) 结构张量 散斑噪声 迭代重建 图像(数学) 算法 数学 光学 物理 贝叶斯概率 纯数学
作者
Parisa Ghaderi Daneshmand,Hossein Rabbani
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2547-2562 被引量:2
标识
DOI:10.1109/tmi.2024.3369176
摘要

Optical coherence tomography (OCT) is a non-invasive and effective tool for the imaging of retinal tissue. However, the heavy speckle noise, resulting from multiple scattering of the light waves, obscures important morphological structures and impairs the clinical diagnosis of ocular diseases. In this paper, we propose a novel and powerful model known as tensor ring decomposition-guided dictionary learning (TRGDL) for OCT image denoising, which can simultaneously utilize two useful complementary priors, i.e., three-dimensional low-rank and sparsity priors, under a unified framework. Specifically, to effectively use the strong correlation between nearby OCT frames, we construct the OCT group tensors by extracting cubic patches from OCT images and clustering similar patches. Then, since each created OCT group tensor has a low-rank structure, to exploit spatial, non-local, and its temporal correlations in a balanced way, we enforce the TR decomposition model on each OCT group tensor. Next, to use the beneficial three-dimensional inter-group sparsity, we learn shared dictionaries in both spatial and temporal dimensions from all of the stacked OCT group tensors. Furthermore, we develop an effective algorithm to solve the resulting optimization problem by using two efficient optimization approaches, including proximal alternating minimization and the alternative direction method of multipliers. Finally, extensive experiments on OCT datasets from various imaging devices are conducted to prove the generality and usefulness of the proposed TRGDL model. Experimental simulation results show that the suggested TRGDL model outperforms state-of-the-art approaches for OCT image denoising both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助ppyymm采纳,获得10
1秒前
现代飞鸟完成签到,获得积分10
2秒前
酷炫的菠萝完成签到 ,获得积分10
2秒前
小二郎应助乐观伟诚采纳,获得10
2秒前
mmx发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
ghkjl完成签到,获得积分10
5秒前
7秒前
7秒前
动听的草丛完成签到 ,获得积分10
9秒前
小韩儒儒完成签到,获得积分10
10秒前
善学以致用应助xww采纳,获得10
10秒前
乐观伟诚完成签到,获得积分10
10秒前
mmx完成签到,获得积分10
11秒前
ICE_MILK发布了新的文献求助10
11秒前
mycn发布了新的文献求助10
12秒前
13秒前
yxy完成签到,获得积分10
14秒前
慕青应助淡淡的雅山采纳,获得10
15秒前
Blaseaka完成签到 ,获得积分0
16秒前
乐正如娆发布了新的文献求助20
16秒前
长情的语风完成签到 ,获得积分10
16秒前
ICE_MILK完成签到,获得积分20
16秒前
16秒前
16秒前
小二郎应助yao采纳,获得10
17秒前
avalanche应助koi采纳,获得20
17秒前
Alice_Arendt应助fkhuny采纳,获得20
18秒前
18秒前
18秒前
18秒前
18秒前
飞翔的霸天哥应助11采纳,获得30
18秒前
19秒前
乐观伟诚发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396967
求助须知:如何正确求助?哪些是违规求助? 4517335
关于积分的说明 14063130
捐赠科研通 4429122
什么是DOI,文献DOI怎么找? 2432233
邀请新用户注册赠送积分活动 1424725
关于科研通互助平台的介绍 1403724