作者
Wenkai Feng,Yu Zhang,Donghui Lu,Jiaqi Zhang,Wen Zeng,Qu Zhou
摘要
ABSTRACTOil-immersed power transformers generate characteristic gases after failure,Therefore, it is necessary to analyse and monitor the soluble gases in transformer oil samples. In this study, the DFT calculation method was used to study the adsorption properties of H2, CO, C2H2, and C2H4 gases in oil on both intrinsic MoTe2 and Rh-doped MoTe2 films. In order to analyse the adsorption characteristics, this paper first obtains the most stable Rh-doped MoTe2 monolayer model through the modelling and computational analysis of different doping sites, then, the adsorption of these gases on the material surface is studied by analysing adsorption energy, charge transfer, total state density, parting density, energy band structure, differential charge density map, molecular front orbital and desorption time, and finally concludes that Rh-MoTe2 monolayer film is the ideal material for hydrogen sensing elements, due to the extremely long desorption time of CO gas, indicating that CO gas is hard to desorption on the surface of adsorbent,which shows that this process has played a certain role in promoting CO removal.Highlights Study focused on gas adsorption using DFT: Rh-MoTe2 ideal for hydrogen sensing and effective for CO removal, intrinsic MoTe2 ineffective and required metal doping.Rh doping enhanced conductivity and gas adsorption capacity in MoTe2. Rh-MoTe2 was suitable for detecting H2, C2H2, and C2H4 gases.Desorption times vary with temperature, with CO removal particularly effective at higher temperatures.Findings suggest potential applications for Rh-MoTe2 in gas sensing and removal.KEYWORDS: First-PrinciplesRh-MoTe2 monolayeradsorptiongas sensors Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work has been supported in part by the National Natural Science Foundation of China (Nos. 52077177 and 51507144) and the Fundamental Research Funds for the Central Universities (No. XDJK2019B021).