亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Glycolysis-Driven IFN-γ Expression in T-Cell Via Histone Lactylation Promotes Acute Graft-Versus-Host Disease

组蛋白 糖酵解 生物 厌氧糖酵解 造血 细胞 癌症研究 免疫学 细胞生物学 新陈代谢 干细胞 生物化学 基因
作者
Hengwei Wu,Xin Jin,Fei Gao,Jimin Shi,Yi Luo,He Huang,Yanmin Zhao
出处
期刊:Blood [American Society of Hematology]
卷期号:142 (Supplement 1): 6802-6802
标识
DOI:10.1182/blood-2023-182560
摘要

Background Cell metabolism is a highly regulated process essential for sustaining life and driving evolution. Cellular metabolites and metabolic flux intricately govern post-translational modifications of proteins. In the context of acute graft-versus-host disease (aGVHD), T cells undergo enhanced glycolysis, resulting in increased lactate production. Consequently, lactate may act as a substrate for lysine lactylation (Kla), influencing gene expression by modulating histone biology. This study aims to assess T cell glucose metabolism during aGVHD, investigate the role of histone lactylation, and explore its impact on T cell functionality. Methods We conducted a comparative analysis of histone lactylation between aGVHD patients and individuals undergoing allo hematopoietic stem cell transplantation (control). Subsequently, we established a murine bone marrow transplant model and isolated T cells for analysis. Glucose metabolism status was assessed using extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) assays, along with the 2-NBDG glucose uptake assay. To comprehensively investigate histone lactylation in T cells, we employed the cleavage under targets and tagmentation (CUT&Tag) technique to explore its regulatory effects on gene expression. To investigate the impact of lactatylation on aGVHD pathology, we constructed an aGVHD model by applying T cells with a specific deletion of LDHA. Results By analyzing the serum lactate at the onset of aGVHD, we found that patients with grade III-IV aGVHD had significantly higher lactate levels compared to those with grade I-II aGVHD ( Figure 1A). In light of this finding, we further examined the histone lactylation levels in T cells from aGVHD patients. The results demonstrated an enhanced histone lactylation in these T cells compared to controls ( Figure 1B). In the aGVHD mice, the ECAR of T cells exhibited a significant increase ( Figure 1C). Intriguingly, the OCR were also significantly higher in the aGVHD mice compared to the bone marrow T cell-depleted (BM-TCD) mice ( Figure 1D). Additionally, the 2-NBDG revealed a significantly higher fluorescence intensity in aGVHD mice ( Figure 1E). Through analysis of T cell RNA-seq data, we discovered upregulation of most glycolytic enzymes in aGVHD mice similar to human data ( Figure 1F). Notably, LDHA, glucose transporter 1 ( Slc2a1), and monocarboxylate transporter 4 ( Slc16a3) were highly upregulated ( Figure 1G). The upregulation of LDHA in T cells from aGVHD mice prompted us to investigate the presence of histone lactylation. The results revealed that histone in T cells from aGVHD mice exhibited a higher level of lactylation ( Figure 1H). Because lactylation was particularly prominent at the H4K12 site, we conducted CUT&Tag experiments. We found promoters of key regulatory genes of the Th1 subset, such as Tbx21 and Ifng, along with several genes associated with IFN-γ production, including Stim2, Crtam, Il18rap, Fasl, and Phf11a, Cxcr3 were all lactylated ( Figure 1I). Specifically, the Call Peak analysis confirmed the elevated H4K12la levels on the promoters Tbx21 and Ifng ( Figure 1J). The expression of IFN-γ and CXCR3 in CD4 + and CD8 + T cells of aGVHD mice was significantly higher than in BM-TCD mice ( Figure 1K). To confirm the role of histone lactylation in IFN-γ generation, we intervened with T cells using the p300 lactylation writer inhibitor (A485). The results demonstrated a significant reduction in histone lactylation upon A485 treatment, which was effectively restored by the addition of neutral lactate sodium (Nala) ( Figure 1L). Notably, A485 treatment led to a decrease in IFN-γ + T cells, while Nala administration resulted in a substantial recovery of IFN-γ expression ( Figure 1M). Additionally, the infusion of Cd4creLdhafl/fl T cells into recipient mice improved the survival of aGVHD mice ( Figure 1N). Conclusion This study represents the first global investigation of T cell histone lactylation in aGVHD. Importantly, we have uncovered a novel link between histone lactylation and the regulation of IFN-γ-related gene expression in the context of aGVHD. Considering the heightened glycolysis and the pivotal role of IFN-γ in aGVHD pathology, it is plausible to postulate that T cell-produced lactate induces histone lactylation, thereby promoting the transcription of IFN-γ-related genes and contributing to the development of aGVHD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
俊逸的念寒完成签到 ,获得积分10
10秒前
556应助清浅采纳,获得10
16秒前
冷静的振家完成签到,获得积分10
16秒前
领导范儿应助chen采纳,获得10
19秒前
21秒前
23秒前
23秒前
24秒前
fay发布了新的文献求助10
25秒前
26秒前
30秒前
34秒前
chen完成签到,获得积分10
35秒前
火山蜗牛完成签到,获得积分10
37秒前
chen发布了新的文献求助10
39秒前
39秒前
王钢铁完成签到,获得积分10
39秒前
科研通AI2S应助盛夏如花采纳,获得10
40秒前
44秒前
小森华东完成签到 ,获得积分10
46秒前
倒逆之蝶发布了新的文献求助10
48秒前
在水一方应助帅气的亦玉采纳,获得10
48秒前
53秒前
55秒前
Bin发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lld发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
NEUROVASCULAR完成签到,获得积分10
1分钟前
踏实南瓜胖墩墩完成签到,获得积分10
1分钟前
NEUROVASCULAR发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984