Identifying two distinct neuroanatomical subtypes of first-episode depression using heterogeneity through discriminative analysis

神经科学 神经影像学 萧条(经济学) 丘脑 生物 心理学 宏观经济学 经济
作者
Yuan Chen,Yi Chen,Ruiping Zheng,Kangkang Xue,Shuying Li,Jianyue Pang,Hengfen Li,Yong Zhang,Jingliang Cheng,Shaoqiang Han
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:349: 479-485 被引量:4
标识
DOI:10.1016/j.jad.2024.01.091
摘要

Neurobiological heterogeneity in depression remains largely unknown, leading to inconsistent neuroimaging findings. Here, we adopted a novel proposed machine learning method ground on gray matter volumes (GMVs) to investigate neuroanatomical subtypes of first-episode treatment-naïve depression. GMVs were obtained from high-resolution T1-weighted images of 195 patients with first-episode, treatment-naïve depression and 78 matched healthy controls (HCs). Then we explored distinct subtypes of depression by employing heterogeneity through discriminative analysis (HYDRA) with regional GMVs as features. Two prominently divergent subtypes of first-episode depression were identified, exhibiting opposite structural alterations compared with HCs but no different demographic features. Subtype 1 presented widespread increased GMVs mainly located in frontal, parietal, temporal cortex and partially located in limbic system. Subtype 2 presented widespread decreased GMVs mainly located in thalamus, cerebellum, limbic system and partially located in frontal, parietal, temporal cortex. Subtype 2 had smaller TIV and longer illness duration than Subtype 1. And TIV in Subtype 1 was positively correlated with age of onset while not in Subtype 2, probably implying the different potential neuropathological mechanisms. Despite results obtained in this study were validated by employing another brain atlas, the conclusions were acquired from a single dataset. This study revealed two distinguishing neuroanatomical subtypes of first-episode depression, which provides new insights into underlying biological mechanisms of the heterogeneity in depression and might be helpful for accurate clinical diagnosis and future treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉祥高趙发布了新的文献求助10
1秒前
尼克11完成签到,获得积分10
1秒前
1秒前
harden9159完成签到,获得积分10
1秒前
123jjj发布了新的文献求助10
2秒前
2秒前
星辰大海应助甜甜圈采纳,获得10
3秒前
一只龟龟完成签到 ,获得积分10
3秒前
3秒前
知足肠乐完成签到,获得积分10
3秒前
我最爱读文献了完成签到,获得积分10
3秒前
anesthesist发布了新的文献求助10
4秒前
cquank完成签到,获得积分10
4秒前
银角大王完成签到,获得积分10
5秒前
惠JUI完成签到,获得积分20
5秒前
研友_ZzaKqn完成签到,获得积分0
6秒前
wazx完成签到,获得积分10
6秒前
灵犀完成签到,获得积分10
7秒前
啊标完成签到,获得积分10
7秒前
小蘑菇应助科研混子采纳,获得10
7秒前
大姨妈完成签到,获得积分10
8秒前
科研混子表锅完成签到,获得积分10
8秒前
Luka完成签到,获得积分10
9秒前
9秒前
haorui完成签到,获得积分10
10秒前
易欣乐慰应助含蓄的如松采纳,获得20
10秒前
万里完成签到,获得积分10
11秒前
遊星完成签到,获得积分10
11秒前
聪慧的迎夏完成签到,获得积分10
12秒前
新新完成签到,获得积分10
12秒前
木子完成签到 ,获得积分10
13秒前
痴情的博超完成签到 ,获得积分10
13秒前
shjyang发布了新的文献求助10
13秒前
cdercder应助诚心的老六采纳,获得10
14秒前
大模型应助Luka采纳,获得10
14秒前
LY完成签到,获得积分10
15秒前
彳亍完成签到,获得积分10
15秒前
Chii完成签到,获得积分10
16秒前
chenqi完成签到,获得积分10
16秒前
floraaa完成签到 ,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750083
求助须知:如何正确求助?哪些是违规求助? 3293361
关于积分的说明 10081205
捐赠科研通 3008733
什么是DOI,文献DOI怎么找? 1652361
邀请新用户注册赠送积分活动 787410
科研通“疑难数据库(出版商)”最低求助积分说明 752179